Collective monograph

Collective monograph “Bioactive compounds, new substances and materials – 2025”

Collective monograph download link (pdf)

Bioactive compounds, new substances and materials – 2025. Edited by A.O. Kolodyazhna. V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine. Kyiv : LLC “SPE “Interservice”, 2025. 378 p.

https://doi.org/10.15407/book23-978-966-999-557-5

Title: Bioactive compounds, new substances and materials – 2025

Author(s): Savchuk T.V., Shablykin O.V., Shulga Yu.V. and others

Editor: Kolodyazhna A.O.

Year: 2025

ISBN: 978-966-999-557-5

Publisher: V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine

Place Published: Kyiv

Publication Languages: Ukrainian, English

UDC 54-414, 543.4, 544.4, 547.47, 547.7, 633/635, 661.1, 678.02 

Abstract

The collective monograph presents the works of the employees of the V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, as well as scientists from other institutes and universities. Two chapters of the book contain scientific works on bioorganic chemistry, organic chemistry, petrochemistry, chemistry of high-molecular compounds, etc. The first part presents the results of the synthesis of new organic compounds, the study of their reactivity, the prediction of pharmacokinetic parameters, the study of biological activity, and the establishment of the relationship between structure and activity. The second chapter introduces scientific developments related to new polymer compositions for various purposes with improved target characteristics, adhesive materials for multi-purpose use with a wide temperature range, pollutant sorbents, new fuels and lubricants, catalysts for oleochemical transformations, and methods for processing anthropogenic waste. The book is intended for a wide range of specialists in the field of chemistry and biology, as well as graduate students and students.

Recommended for publication by the Academic Council of the V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine (protocol No. 12 dated August 28, 2025).

Keywords: organic chemistry, bioorganic chemistry, synthesis, bioactive compounds

Reviewers:

Doctor of Medical Sciences V.V. Zhirnov

Doctor of Chemical Sciences, Professor V.D. Romanenko

References:

  1. 1. Kulinkovich O.G. Cyclopropanes in Organic Synthesis. John Wiley & Sons, Inc., 2015. 418 p.
    https://doi.org/10.1002/9781118978429

     

    2. Neouchy Z., Hullaert J., Verhoeven J. Synthesis of cyclopropyl pinacol boronic esters from dibromocyclopropanes. Synlett. 2022. Vol. 33, N 8. P. 759-766.
    https://doi.org/10.1055/s-0037-1610794

     

    3. Teiichi A., Takashi I., Eiichi O., Hiroki S. Reduction of 1-substituted 7-chloro-7-fluoronorcaranes with tributyltin hydride. Journal of Organic Chemistry. 1981. Vol. 46, N 22. P. 4446-4450.
    https://doi.org/10.1021/jo00335a024

     

    4. Renslo A., Jaishankar P., Venkatachalam R., Hackbarth C., Lopez S., Patel D.V., Gordeev M. Conformational constraint in oxazolidinone antibacterials. Synthesis and structure-activity studies of (azabicyclo[3.1.0]hexylphenyl) oxazolidinones. Journal of Medicinal Chemistry. 2005. Vol. 48, N 15. P. 5009-5024.
    https://doi.org/10.1021/jm058204j

     

    5. Poteat C.M., Jang Y., Jung M., Johnson J.D., Williams R.G., Lindsay V.N.G. Enantioselective synthesis of cyclopropanone equivalents and application to the formation of chiral β‐lactams. Angewandte Chemie – International Edition. 2020. Vol. 59, N 42. P. 18655-18661.
    https://doi.org/10.1002/anie.202006786

     

    6. Chen Y. Recent progress in regulating the activity of enzymes with photoswitchable inhibitors. Molecules. 2024. Vol. 29, N 19. P. 4523.
    https://doi.org/10.3390/molecules29194523

     

    7. Kobauri P., Dekker F.J., Szymanski W., Feringa B.L. Rational design in photopharmacology with molecular photoswitches. Angewandte Chemie International Edition. 2023. Vol. 62, N 62. e202300681.
    https://doi.org/10.1002/anie.202300681

     

    8. Horatscheck A., Wagner S., Ortwein J., Kim B.G., Lisurek M., Beligny S., Schütz A., Rademann J. Benzoylphosphonate-based photoactive phosphopeptide mimetics for modulation of protein tyrosine phosphatases and highly specific labeling of SH2 domains. Angewandte Chemie International Edition. 2012. Vol. 51, N 37. P. 9441-9447.
    https://doi.org/10.1002/anie.201201475

     

    9. Wagner S., Schutz A., Rademann J. Light-switched inhibitors of protein tyrosine phosphatase PTP1B based on phosphonocarbonyl phenylalanine as phosphoactive phosphotyrosine mimetic. Bioorganic & Medicinal Chemistry. 2015. Vol. 23, N 12. P. 2839-2847.
    https://doi.org/10.1016/j.bmc.2015.03.074

     

    10. Kobzar О.L., Shulha Y.V., Buldenko V.M., Mrug G.P., Kolotylo M.V., Stanko O.V., Onysko P.P., Vovk А.I. Alkyl and aryl α-ketophosphonate derivatives as photoactive compounds targeting glutathione S-transferases. Phosphorus, Sulfur, Silicon, and the Related Elements. 2021. Vol. 196, N 7. P. 672-678.
    https://doi.org/10.1080/10426507.2021.1901703

     

    11. Kobzar O., Shulha Y., Buldenko V., Cherenok S., Silenko O., Kalchenko V., Vovk A. Inhibition of glutathione S-transferases by photoactive calix[4]arene α-ketophosphonic acids. Bioorganic & Medicinal Chemistry Letters. 2022. Vol. 77. 129019.
    https://doi.org/10.1016/j.bmcl.2022.129019

     

    12. Sun T., Zhen T., Harakandi C.H., Wang L., Guo H., Chen Y., Sun H. New insights into butyrylcholinesterase: pharmaceutical applications, selective inhibitors and multitarget-directed ligands. European Journal of Medicinal Chemistry. 2024. Vol. 275. Р. 116569.
    https://doi.org/10.1016/j.ejmech.2024.116569

     

    13. Spatz P., Zimmermann T., Steinmüller S., Hofmann J., Maurice T., Decker M. Novel benzimidazole-based pseudo-irreversible butyrylcholinesterase inhibitors with neuroprotective activity in an Alzheimer’s disease mouse model. RSC Medicinal Chemistry. 2022. Vol. 13, N 8. P. 944-954.
    https://doi.org/10.1039/D2MD00087C

     

    14. Shah A.J., Mohi-Ud-Din R., Sabreen S., Wani T.U., Jan R., Javed M.N., Mir P.A., Mir R.H., Masoodi M.H. Clinical biomarkers and novel drug targets to cut Gordian Knots of Alzheimer’s Disease. Current Molecular Pharmacology. 2023. Vol. 16, N 3. P. 254-279.
    https://doi.org/10.2174/1874467215666220903095837

     

    15. Colleoni A., Galli G., Dallanoce C., De Amici M., Gorostiza P., Matera C. Light‐activated pharmacological tools for exploring the cholinergic system. Medicinal Research Reviews. 2025. Vol. 45, N 4. P. 1251-1274.
    https://doi.org/10.1002/med.22108

     

    16. Scheiner M., Sink A., Spatz P., Endres E., Decker M. Photopharmacology on acetylcholinesterase: novel photoswitchable inhibitors with improved pharmacological profiles. ChemPhotoChem. 2021. Vol. 5, N 2. P. 149-159.
    https://doi.org/10.1002/cptc.202000119

     

    17. Scheiner M., Sink A., Hoffmann M., Vrigneau C., Endres E., Carles A., Sotriffer C., Maurice T., Decker M. Photoswitchable pseudoirreversible butyrylcholinesterase inhibitors allow optical control of inhibition in vitro and enable restoration of cognition in an Alzheimer’s disease mouse model upon irradiation. Journal of the American Chemical Society. 2022. Vol. 144. P. 3279-3284.
    https://doi.org/10.1021/jacs.1c13492

     

    18. Kachaeva M.V., Hodyna D.M., Obernikhina N.V., Pilyo S.G., Kovalenko Y.S., Prokopenko V.M., Kachkovsky O.D., Brovarets V.S. Dependence of the anticancer activity of 1,3-oxazole derivatives on the donor/acceptor nature of his substitues. Journal of Heterocyclic Chemistry. 2019. Vol. 56, N 11. Р. 3122-3134.
    https://doi.org/10.1002/jhet.3711

     

    19. Kachaeva M.V., Pilyo S.G., Zhirnov V.V., Brovarets V.S. Synthesis, characterization, and in vitro anticancer evaluation of 2 substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles. Medicinal Chemistry Research. 2019. Vol. 28, N 1. Р. 71-80.
    https://doi.org/10.1007/s00044-018-2265-y

     

    20. Kachaeva M.V., Hodyna D.M., Semenyuta I.V., Pilyo S.G., Prokopenko V.M., Kovalishyn V.V., Metelytsia L.O., Brovarets V.S. Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Computational Biology and Chemistry. 2018. Vol. 74. Р. 294-303.
    https://doi.org/10.1016/j.compbiolchem.2018.04.006

     

    21. Monks A., Scudiero D., Skehan P., Shoemaker R., Paull K., Vistica D., Hose C., Langley J., Cronise P., Vaigro‐Wolff A., Gray‐Goodrich M., Campbell H., Mayo J., Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute. 1991. Vol. 83, N 11. Р. 757-766.
    https://doi.org/10.1093/jnci/83.11.757

     

    22. Boyd M.R., Paull K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Development Research. 1995. Vol. 34, N 2. P. 91-109.
    https://doi.org/10.1002/ddr.430340203

     

    23. Shoemaker R.H. The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Cancer. 2006. Vol. 6. P. 813-823.
    https://doi.org/10.1038/nrc1951

     

    24. Lin Y.-S., Li G.-D., Mao Sh.-P., Chai J.-D. Long-range corrected hybrid density functionals with improved dispersion corrections. Journal of Chemical Theory and Computation. 2013. Vol. 9, N 1. P. 263-272.
    https://doi.org/10.1021/ct300715s

     

    25. Obernikhina N., Kachaeva M., Shchodryi V., Prostota Ya., Kachkovsky O., Brovarets V., Tkachuk Z. Topological index of conjugated heterocyclic compounds as their donor/acceptor parameter. Polycyclic Aromatic Compounds. 2020. Vol. 40, N 4. P. 1196-1209.
    https://doi.org/10.1080/10406638.2018.1538056

     

    26. Kachaeva M.V., Obernikhina N.V., Veligina E.S., Zhuravlova M.Y., Prostota Y.O., Kachkovsky O.D., Brovarets V.S. Estimation of biological affinity of nitrogen-containing conjugated heterocyclic pharmacophores. Chemistry of Heterocyclic Compounds. 2019. Vol. 55, N 4-5. P. 448-454.
    https://doi.org/10.1007/s10593-019-02478-6

     

    27. Nazli A., He D.L., Liao D., Khan M.Z.I., Huang C., He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Advanced Drug Delivery Reviews. 2022. Vol. 189. Р. 114502.
    https://doi.org/10.1016/j.addr.2022.114502

     

    28. Frickmann H., Hahn A., Berlec S., Ulrich J., Jansson M., Schwarz N., Warnke P., Podbielski A. On the etiological relevance of Escherichia coli and Staphylococcus aureus in superficial and deep infections – a hypothesis-forming, retrospective assessment. European Journal of Microbiology and Immunology. 2019. Vol. 9. P. 1-7.
    https://doi.org/10.1556/1886.2019.00021

     

    29. Andersson M.I., MacGowan A.P. Development of the quinolones. Journal of Antimicrobial Chemotherapy. 2003. Vol. 51. P. 1-11.
    https://doi.org/10.1093/jac/dkg212

     

    30. Ojha M., Yadav D., Kumar A., Dasgupta S., Yadav R. 1,8-Naphthyridine derivatives: a privileged scaffold for versatile biological activities. Mini-Reviews in Medicinal Chemistry. 2021. Vol. 21, N 5. P. 586-601.
    https://doi.org/10.2174/1389557520666201009162804

     

    31. Aggarwal N., Kumar R., Dureja P., Khurana J. Synthesis of novel nalidixic acid-based 1,3,4-thiadiazole and 1,3,4-oxadiazole derivatives as potent antibacterial agents. Chemical Biology & Drug Design. 2011. Vol. 79. P. 384-397.
    https://doi.org/10.1111/j.1747-0285.2011.01316.x

     

    32. Abdel-Moty S., Hetta H. Synthesis of new 1,2,4-triazole derivatives of nalidixic acid as potential antibacterial and antifungal agents. Bulletin of Pharmaceutical Sciences. 2009. Vol. 32. P. 125-140.
    https://doi.org/10.21608/bfsa.2009.63350

     

    33. Faidallah H.M., Girgis A.S., Tiwari A.D., Honkanadavar H.H., Thomas S.J., Samir A., Kalmouch A., Alamry K.A., Khan K.A., Ibrahim T.S., AL-Mahmoudy A.M.M., Asiri A.M., Panda S.S. Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates. European Journal of Medicinal Chemistry. 2018. Vol. 143. P. 1524-1534.
    https://doi.org/10.1016/j.ejmech.2017.10.042

     

    34. Deng Y., Liu Y., Li J., Wang X., He S., Yan X., Shi Y., Zhang W., Ding L. Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. European Journal of Medicinal Chemistry. 2022. Vol. 239. P. 114513.
    https://doi.org/10.1016/j.ejmech.2022.114513

     

    35. Liu M., El-Hossary E.M., Oelschlaeger T.A., Donia M.S., Quinn R.J., Abdelmohsen U.R. Potential of marine natural products against drug-resistant bacterial infections. Lancet Infectious Diseases. 2019. Vol. 19. E237-E245.
    https://doi.org/10.1016/S1473-3099(18)30711-4

     

    36. Ferreira Montenegro P., Pham G.N., Abdoul-Latif F.M., Taffin-de-Givenchy E., Mehiri M. Marine bromotyrosine derivatives in spotlight: bringing discoveries and biological significance. Marine Drugs. 2024. Vol. 22, N 3. P. 132.
    https://doi.org/10.3390/md22030132

     

    37. Muzychka L., Voronkina A., Kovalchuk V., Smolii O.B., Wysokowski M., Petrenko I., Youssef D.T.A., Ehrlich I., Ehrlich H. Marine biomimetics: Bromotyrosines loaded chitinous skeleton as source of antibacterial agents. Applied Physics A. 2021. Vol. 127. P. 15.
    https://doi.org/10.1007/s00339-020-04167-0

     

    38. Kwaśniewska D., Chen Y.L., Wieczorek D. Biological activity of quaternary ammonium salts and their derivatives. Pathogens. 2020. Vol. 9. P. 459.
    https://doi.org/10.3390/pathogens9060459

     

    39. Bazina L., Maravić A., Krce L., Soldo B., Odžak R., Aviani I., Primožič I., Šprung M. Discovery of novel quaternary ammonium compounds based on quinuclidine-3-ol as new potential antimicrobial candidates. European Journal of Medicinal Chemistry. 2019. Vol. 163. P. 626-635.
    https://doi.org/10.1016/j.ejmech.2018.12.023

     

    40. Dan W., Gao J., Qi X., Wang J., Dai J. Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism. European Journal of Medicinal Chemistry. 2022. Vol. 243. P. 114765.
    https://doi.org/10.1016/j.ejmech.2022.114765

     

    41. Obłąk E., Futoma-Kołoch B., Wieczyńska A. Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds. World Journal of Microbiology and Biotechnology. 2021. Vol. 37. P. 22.
    https://doi.org/10.1007/s11274-020-02978-0

     

    42. Muzychka L., Hodyna D., Metelytsia L., Smolii O. Nature‐inspired novel quaternary ammonium compounds: synthesis, antibacterial and antibiofilm activity. ChemMedChem. 2025. Vol. 20. P. E202400807.
    https://doi.org/10.1002/cmdc.202400807

     

    43. Muzychka L., Hodyna D., Metelytsia L., Smolii O. In vitro evaluation of antibacterial and antibiofilm activity of new bis-quaternary ammonium compounds based on natural products. Current Chemistry Letters. 2025. Vol. 14, N 2. P. 271-278.
    https://doi.org/10.5267/j.ccl.2024.11.007

     

    44. Kowalska-Krochmal B., Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens. 2021. Vol. 10, N 2. P. 165.
    https://doi.org/10.3390/pathogens10020165

     

    45. Park B.K., Kitteringham N.R., O’Neill P.M. Metabolism of fluorine-containing drugs. Annual Review of Pharmacology and Toxicology. 2001. Vol. 41. P. 443-470.
    https://doi.org/10.1146/annurev.pharmtox.41.1.443

     

    46. Muller K., Faeh C., Diederich F. Fluorine in pharmaceuticals: looking beyond intuition. Science. 2007. Vol. 317. P. 1881-1886.
    https://doi.org/10.1126/science.1131943

     

    47. Abel S.M., Back D.J., Maggs J.L., Park B.K.J. Cortisol metabolism by human liver in vitro-IV. Metabolism of 9α-fluorocortisol by human liver microsomes and cytosol. Journal of Steroid Biochemistry and Molecular Biology. 1993. Vol. 46. P. 833-839.
    https://doi.org/10.1016/0960-0760(93)90326-R

     

    48. Chernykh A.V., Melnykov K.P., Tolmacheva N.A., Kondratov I.S., Radchenko D.S., Daniliuc C.G., Volochnyuk D.M., Ryabukhin S.V., Kuchkovska Y.O., Grygorenko O.O. Last of the gem-difluorocycloalkanes: Synthesis and characterization of 2,2-difluorocyclobutyl-substituted building blocks. Journal of Organic Chemistry. 2019. Vol. 84. P. 8487-8496.
    https://doi.org/10.1021/acs.joc.9b00719

     

    49. Demchuk O.P., Bobovskyi B.V., Vashchenko B.V., Hryshchuk O.V., Skreminskyi A., Chernykh A.V., Moskvina V.S., Hordiyenko O.V., Volochnyuk D.M., Grygorenko O.O. 3-Fluoroalkyl (CF3, CHF2, CH2F) cyclobutane-derived building blocks for medicinal chemistry: synthesis and physicochemical properties. European Journal of Medicinal Chemistry. 2023. Vol. 26. e202300292.
    https://doi.org/10.1002/ejoc.202300292

     

    50. Melnykov K.P., Nosik P.S., Kurpil B.B., Sibgatulin D.A., Volochnyuk D.M., Ryabukhin S.V., Grygorenko O.O. Synthesis of gem-difluorocyclopentane /hexane building blocks. Journal of Fluorine Chemistry. 2017. Vol. 199. P. 60-66.
    https://doi.org/10.1016/j.jfluchem.2017.04.012

     

    51. Demchuk O.P., Hryshchuk O.V., Vashchenko B.V., Trofymchuk S.A., Melnykov K.P., Skreminskiy A., Volochnyuk D.M., Grygorenko O.O. Fluoroalkyl-containing 1,2-disubstituted cyclobutanes: advanced building blocks for medicinal chemistry. European Journal of Organic Chemistry. 2021. Vol. 2021. P. 87.
    https://doi.org/10.1002/ejoc.202001345

     

    52. Kautzky J.A., Wang T., Evans R.W., MacMillan D.W.C. Decarboxylative trifluoromethylation of aliphatic carboxylic acids. Journal of the American Chemical Society. 2018. Vol. 140. P. 6522-6526.
    https://doi.org/10.1021/jacs.8b02650

     

    53. Nautiyal A., Wairkar S. Management of hyperpigmentation: current treatments and emerging therapies. Pigment Cell & Melanoma Research. 2021. Vol. 34, N 6. P. 1000-1014.
    https://doi.org/10.1111/pcmr.12986

     

    54. Nosengo N. Can you teach old drugs new tricks? Nature. 2016. Vol. 534, N 7607. P. 314-316.
    https://doi.org/10.1038/534314a

     

    55. Peng Z., Wang G., Zeng Q-H., Li Yu., Liu H., Wang J.J. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Critical Reviews in Food Science and Nutrition. 2022. Vol. 62, N 15. P. 4053-4094.
    https://doi.org/10.1080/10408398.2021.1871724

     

    56. Pretzler M., Bijelic A., Rompel A. Heterologous expression and characterization of functional mushroom tyrosinase (AbPPO4). Scientific Reports. 2017. Vol. 7. Р. 1810-1821.
    https://doi.org/10.1038/s41598-017-01813-1

     

    57. Li J., Feng L., Liu L., Wang F., Ouyang L., Zhang L., Hu X., Wang G. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. European Journal of Medicinal Chemistry. 2021. Vol. 224. Р. 113744.
    https://doi.org/10.1016/j.ejmech.2021.113744

     

    58. Baber M.A., Crist C.M., Devolve N.L., Patrone J.D. Tyrosinase inhibitors: a perspective. Molecules. 2023. Vol. 28. Р. 5762.
    https://doi.org/10.3390/molecules28155762

     

    59. Chang T.S. An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences. 2009. Vol. 10. P. 2440-2475.
    https://doi.org/10.3390/ijms10062440

     

    60. Bhatia T., Sharma S. Drug repurposing: insights into current advances and future applications. Current Medicinal Chemistry. 2025. Vol. 32, N 3. P. 468-510.
    https://doi.org/10.2174/0109298673266470231023110841

     

    61. Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010. Vol. 31, N 2. P. 455-461.
    https://doi.org/10.1002/jcc.21334

     

    62. Gaulton A., Hersey A., Nowotka M., Bento A.P., Chambers J., Mendez D., Mutowo P., et al. The ChEMBL database in 2017. Nucleic Acids Research. 2017. Vol. 45(D1). P. D945-D954.
    https://doi.org/10.1093/nar/gkw1074

     

    63. Kabiri M., Hajizade M.S., Zarei M., Eskandari S., Sakhteman A., Khoshneviszadeh M. A repurposing pipeline to candidate‐suitable inhibitors of tyrosinase: computational and bioassay studies. Chemistry & Biodiversity. 2024. Vol. 21, N 12. e202401035.
    https://doi.org/10.1002/cbdv.202401035

     

    64. Mahalapbutr P., Sabuakham S., Nasoontorn S., Rungrotmongkol Th., Silsirivanit A., Suriya U. Discovery of amphotericin B, an antifungal drug as tyrosinase inhibitor with potent anti-melanogenic activity. International Journal of Biological Macromolecules. 2023. Vol. 246, N 15. Р. 125587.
    https://doi.org/10.1016/j.ijbiomac.2023.125587

     

    65. Choi J., Lee Y.-M., Jee J.-G. Thiopurine drugs repositioned as tyrosinase inhibitors. International Journal of Molecular Sciences. 2017. Vol. 19, N 1. P. 3-15.
    https://doi.org/10.3390/ijms19010077

     

    66. Chang T.-Sh., Lin V.Ch.-H. Melanogenesis inhibitory activity of two generic drugs: cinnarizine and trazodone in mouse B16 melanoma cells. International Journal of Molecular Sciences. 2011. Vol. 12, N 12. P. 8787-6796.
    https://doi.org/10.3390/ijms12128787

     

    67. Kim H.-M., Hyun Ch.-G. Drug repurposing of voglibose, a diabetes medication for skin health. Pharmaceuticals. 2025. Vol. 18, N 2. P. 224-233.
    https://doi.org/10.3390/ph18020224

     

    68. Lee Ye-J., Hyun Ch.-G. Rifampicin repurposing reveals anti-melanogenic activity in B16F10 melanoma cells. Molecules. 2025. Vol. 30, N 4. Р. 900.
    https://doi.org/10.3390/molecules30040900

     

    69. Feng D., Wang R., Sun X., Liu L., Liu P., Tang J., Zhang C., Liu H. Heavy metal stress in plants: Ways to alleviate with exogenous substances. Science of the Total Environment. 2023. Vol. 897. P. 165397.
    https://doi.org/10.1016/j.scitotenv.2023.165397

     

    70. Li X., Zhang L., Ren H., Wang X., Mi F. Zinc toxicity response in Ceratoides arborescens and identification of CaMTP, a novel zinc transporter. Frontiers in Plant Science. 2022. Vol. 13.
    https://doi.org/10.3389/fpls.2022.976311

     

    71. Castro C., Carvalho A., Pavia I., Bacelar E., Lima-Brito J. Grapevine varieties with differential tolerance to Zinc analysed by morpho-histological and cytogenetic approaches. Scientia Horticulturae. 2021. Vol. 288. P. 110386.
    https://doi.org/10.1016/j.scienta.2021.110386

     

    72. Li Q., Guan C., Zhao Y., Duan X., Yang Z., Zhu J. Salicylic acid alleviates Zn-induced inhibition of growth via enhancing antioxidant system and glutathione metabolism in alfalfa. Ecotoxicology and Environmental Safety. 2023. Vol. 265. P. 115500.
    https://doi.org/10.1016/j.ecoenv.2023.115500

     

    73. Werner S., Bartrina I., Schmülling T. Cytokinin regulates vegetative phase change in Arabidopsis thaliana through the miR172/TOE1-TOE2 module. Nature Communications. 2021. Vol. 12, N 1. P. 5816.
    https://doi.org/10.1038/s41467-021-26088-z

     

    74. Ai Y., Chen Y., Wang N., Li J., Liu J., Shen L., Sun X., Han L., Chao Y. Overexpression of MtIPT gene enhanced drought tolerance and delayed leaf senescence of creeping bentgrass (Agrostis stolonifera L.). BMC Plant Biology. 2024. Vol. 24, N 1. P. 734.
    https://doi.org/10.1186/s12870-024-05442-5

     

    75. Bíbová J., Kábrtová V., Večeřová V., Kučerová Z., Hudeček M., Plačková L., Novák O., Strnad M., Plíhal O. The role of a cytokinin antagonist in the progression of clubroot disease. Biomolecules. 2023. Vol. 13, N 2.
    https://doi.org/10.3390/biom13020299

     

    76. Zhou M., Ghnaya T., Dailly H., Cui G., Vanpee B., Han R., Lutts S. The cytokinin trans-zeatine riboside increased resistance to heavy metals in the halophyte plant species Kosteletzkya pentacarpos in the absence but not in the presence of NaCl. Chemosphere. 2019. Vol. 233. P. 954-965.
    https://doi.org/10.1016/j.chemosphere.2019.06.023

     

    77. Pavlíková D., Pavlík M., Procházková D., Zemanová V., Hnilička F., Wilhelmová N. Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. Journal of Plant Physiology. 2014. Vol. 171, N 7. P. 559-564.
    https://doi.org/10.1016/j.jplph.2013.11.016

     

    78. Paradisone V., Navarro-León E., Albacete A., Ruiz J. M., Esposito S., Blasco B. Improvement of the physiological response of barley plants to both Zinc deficiency and toxicity by the application of calcium silicate. Plant Science. 2022. Vol. 319. P. 111259.
    https://doi.org/10.1016/j.plantsci.2022.111259

     

    79. Capasso C., Nocentini A., Supuran C.T. Protease inhibitors targeting the main protease and papain-like protease of coronaviruses. Expert Opinion on Therapeutic Patents. 2021. Vol. 31, N 4. P. 309-324.
    https://doi.org/10.1080/13543776.2021.1857726

     

    80. Reddy A.S., Zhang S. Polypharmacology: drug discovery for the future. Expert Review of Clinical Pharmacology. 2013. Vol. 6, N 1. P. 41-47.
    https://doi.org/10.1586/ecp.12.74

     

    81. Kerti L., Frecer V. Design of inhibitors of SARS-CoV-2 papain-like protease deriving from GRL0617: Structure-activity relationships. Bioorganic & Medicinal Chemistry. 2024. Vol. 113. P. 117909.
    https://doi.org/10.1016/j.bmc.2024.117909

     

    82. Citarella A., Scala A., Piperno A., Micale N. SARS-CoV-2 Mpro: A potential target for peptidomimetics and small-molecule inhibitors. Biomolecules. 2021. Vol. 11, N 4. P. 607.
    https://doi.org/10.3390/biom11040607

     

    83. Ammazzalorso A., De Filippis B., Giampietro L., Amoroso R. N-acylsulfonamides: Synthetic routes and biological potential in medicinal chemistry. Chemical Biology & Drug Design. 2017. Vol. 90. P. 1094-1105.
    https://doi.org/10.1111/cbdd.13043

     

    84. Francisco K.R., Varricchio C., Paniak T.J., Kozlowski M.C., Brancale A., Ballatore C. Structure property relationships of N-acylsulfonamides and related bioisosteres. European Journal of Medicinal Chemistry. 2021. Vol. 218. P. 113399.
    https://doi.org/10.1016/j.ejmech.2021.113399

     

    85. Amador R., Tahrioui A., Barreau M., Lesouhaitier O., Smietana M., Clavé G. N-Acylsulfonamide: a valuable moiety to design new sulfa drug analogues. RSC Medicinal Chemistry. 2023. Vol. 14. P. 1567-1571.
    https://doi.org/10.1039/D3MD00229B

     

    86. Borhade S.R., Svensson R., Brandt P., Artursson P., Arvidsson P.I., Sandström A. Preclinical characterization of acyl sulfonimidamides: potential carboxylic acid bioisosteres with tunable properties. ChemMedChem. 2015. Vol. 10, N 3. P. 455-460.
    https://doi.org/10.1002/cmdc.201402497

     

    87. Pinter T., Jana S., Courtemanche R.J.M., Hof F. Recognition properties of carboxylic acid bioisosteres: anion binding by tetrazoles, aryl sulfonamides, and acyl sulfonamides on a calix[4]arene scaffold. Journal of Organic Chemistry. 2011. Vol. 76, N 10. P. 3733-3741.
    https://doi.org/10.1021/jo200031u

     

    88. Uehling D.E., Donaldson K.H., Deaton D.N., Hyman C.E., Sugg E.E., Barrett D.G., Hughes R.G., Reitter B., Adkison K.K., Lancaster M.E., Lee F., Hart R., Paulik M.A., Sherman B.W., True T., Cowan C. Synthesis and evaluation of potent and selective β3 adrenergic receptor agonists containing acylsulfonamide, sulfonylsulfonamide, and sulfonylurea carboxylic acid isosteres. Journal of Medicinal Chemistry. 2002. Vol. 45, N 3. P. 567-583.
    https://doi.org/10.1021/jm0101500

     

    89. Winters M.P., Crysler C., Subasinghe N., Ryan D., Leong L., Zhao S., Donatelli R., Yurkow E., Mazzulla M., Boczon L., Manthey C.L., Molloy C., Raymond H., Murray L., McAlonan L., Tomczuk B. Carboxylic acid bioisosteres acylsulfonamides, acylsulfamides, and sulfonylureas as novel antagonists of the CXCR2 receptor. Bioorganic & Medicinal Chemistry Letters. 2008. Vol. 18. P. 1926-1930.
    https://doi.org/10.1016/j.bmcl.2008.01.127

     

    90. Pelz N.F., Bian Z., Zhao B., Shaw S., Tarr J.C., Belmar J., Gregg C., Camper D.V., Goodwin C.M., Arnold A.L., Sensintaffar J.L., Friberg A., Rossanese O.W., Lee T., Olejniczak E.T., Fesik S.W. Discovery of 2-indole-acylsulfonamide myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods. Journal of Medicinal Chemistry. 2016. Vol. 59, N 5. P. 2054-2066.
    https://doi.org/10.1021/acs.jmedchem.5b01660

     

    91. Forkasiewicz A., Dorociak M., Stach K., Szelachowski P., Tabola R., Augoff K. The usefulness of lactate dehydrogenase measurements in current oncological practice. Cellular & Molecular Biology Letters. 2020. Vol. 25, N 1. P. 35.
    https://doi.org/10.1186/s11658-020-00228-7

     

    92. Chen J., Huang Z., Chen Y., Tian H., Chai P., Shen Y., Yao Y., Xu S., Ge S., Jia R. Lactate and lactylation in cancer. Signal Transduction and Targeted Therapy. 2025. Vol. 10, N 1. P. 38.
    https://doi.org/10.1038/s41392-024-02082-x

     

    93. Verma S., Budhu S., Serganova I., Dong L., Mangarin L.M., Khan J.F., Bah M.A., Assouvie A., Marouf Y., Schulze I., Zappasodi R., Wolchok J.D., Merghoub T. Pharmacologic LDH inhibition redirects intratumoral glucose uptake and improves antitumor immunity in solid tumor models. Journal of Clinical Investigation. 2024. Vol. 134, N 17. e177606.
    https://doi.org/10.1172/JCI177606

     

    94. Bononi G., Di Bussolo V., Tuccinardi T., Minutolo F., Granchi C. A patent review of lactate dehydrogenase inhibitors (2014-present). Expert Opinion on Therapeutic Patents. 2024. Vol. 34, N 11. P. 1121-1135.
    https://doi.org/10.1080/13543776.2024.2412575

     

    95. Granchi C., Bertini S., Macchia M., Minutolo F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Current Medicinal Chemistry. 2010. Vol. 17, N 7. P. 672-697.
    https://doi.org/10.2174/092986710790416263

     

    96. Friberg A., Rehwinkel H., Nguyen D., Pütter V., Quanz M., Weiske J., Eberspächer U., Heisler I., Langer G. Structural evidence for Isoform-selective allosteric inhibition of lactate dehydrogenase A. ACS Omega. 2020. Vol. 5, N 22. P. 13034-13041.
    https://doi.org/10.1021/acsomega.0c00715

     

    97. Fernandes G.F.S., Lopes J.R., Dos Santos J.L., Scarim C.B. Phthalimide as a versatile pharmacophore scaffold: Unlocking its diverse biological activities. Drug Development Research. 2023. Vol. 84, N 7. P. 1346-1375.
    https://doi.org/10.1002/ddr.22094

     

    98. González M.A., Clark J., Connelly M., Rivas F. Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group. Bioorganic & Medicinal Chemistry Letters. 2014. Vol. 24, N 22. P. 5234-5237.
    https://doi.org/10.1016/j.bmcl.2014.09.061

     

    99. Matore B.W., Banjare P., Sarthi A.S., Roy P.P., Singh J. Phthalimides represent a promising scaffold for multi‐targeted anticancer agents. ChemistrySelect. 2023. Vol. 8, N 9. e202204851.
    https://doi.org/10.1002/slct.202204851

     

    100. Adamek J., Mazurkiewicz R., Węgrzyk A., Erfurt K. 1-Imidoalkylphosphonium salts with modulated Cα-P+ bond strength: Synthesis and application as new active α-imidoalkylating agents. Beilstein Journal of Organic Chemistry. 2017. Vol. 13. P. 1446-1455.
    https://doi.org/10.3762/bjoc.13.142

     

    101. Samala G., Brindha Devi P., Saxena S., Gunda S., Yogeeswari P., Sriram D. Anti-tubercular activities of 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine analogues endowed with high activity toward non-replicative Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry. 2016. Vol. 24, N 21. P. 5556-5564.
    https://doi.org/10.1016/j.bmc.2016.09.012

     

    102. Kirichok A.A., Shton I., Kliachyna M., Pishel I., Mykhailiuk P.K. 1-Substituted 2-azaspiro[3.3]heptanes: overlooked motifs for drug discovery. Angewandte Chemie International Edition. 2017. Vol. 56, N 30. P. 8865-8869.
    https://doi.org/10.1002/anie.201703801

     

    103. Kirichok A.A., Shton I.O., Pishel I.M., Zozulya S.A., Borysko P.O., Kubyshkin V., Zaporozhets O.A., Tolmachev A.A., Mykhailiuk P.K. Synthesis of multifunctional spirocyclic azetidines and their application in drug discovery. Chemistry-A European Journal. 2018. Vol. 24, N 21. P. 5444-5449.
    https://doi.org/10.1002/chem.201800193

     

    104. Kirichok A., Yegorova T. Functionalized derivatives of 2-azaspiro[3.3]heptane-1-carboxylic acid and 7-oxa-2-azaspiro[3.5]nonane-1-carboxylic acid for drug design. French-Ukrainian Journal of Chemistry. 2023. Vol. 11, N 2. P. 31-38.
    https://doi.org/10.17721/fujcV11I2P31-38

     

    105. Krämer T., Gyton M.R., Bustos I., Sinclair M.J.G., Tan Sze-yin, Wedge C.J., Macgregor S.A., Chaplin A.B. Stability and C−H bond activation reactions of palladium (I) and platinum (I) metalloradicals: Carbon-to-metal H-atom transfer and an organometallic radical rebound mechanism. Journal of the American Chemical Society. 2023. Vol. 145. P. 14087−14100.
    https://doi.org/10.1021/jacs.3c04167

     

    106. Gunsalus N.J., Koppaka A., Park S.H., Bischof S.M., Hashiguchi B.G., Periana R.A. Homogeneous functionalization of methane. Chemical Reviews. 2017. Vol. 117, N 13. Р. 8521-8573.
    https://doi.org/10.1021/acs.chemrev.6b00739

     

    107. Волкова Л.К., Опейда Л.І. Гомо- і гетеролітичні механізми в реакціях нормальних алканів у присутності паладію (II). Український журнал природничих наук. 2025. № 11. C. 364-377.
    https://doi.org/10.32782/naturaljournal.11.2025.37

     

    108. Gill S.S., Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant signaling & behavior. 2010. Vol. 5, N 1. P. 26-33.
    https://doi.org/10.4161/psb.5.1.10291

     

    109. Alcázar R., Altabella T., Marco F., Bortolotti C., Reymond M., Koncz C., Carrasco P., Tiburcio A. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta. 2010. Vol. 231. P. 1237-1249.
    https://doi.org/10.1007/s00425-010-1130-0

     

    110. Zarza X., Shabala L., Fujita M., Shabala S., Haring M.A., Tiburcio A.F., Munnik T. Extracellular spermine triggers a rapid intracellular phosphatidic acid response in Arabidopsis, involving PLDδ activation and stimulating ion flux. Frontiers in Plant Science. 2019. Vol. 10. P. 601.
    https://doi.org/10.3389/fpls.2019.00601

     

    111. Kue Foka I.C., Ketehouli T., Zhou Y., Li X.-W., Wang F.-W., Li H. The emerging roles of diacylglycerol kinase (DGK) in plant stress tolerance, growth, and development. Agronomy. 2020. Vol. 10. P. 1375.
    https://doi.org/10.3390/agronomy10091375

     

    112. Pejchar P., Scherer G.E., Martinec J. Assaying nonspecific phospholipase C activity, in Plant Lipid Signaling Protocols. T. Munnik and I. Heilmann, Editors. 2013, Humana Press. P. 193-203.
    https://doi.org/10.1007/978-1-62703-401-2_18

     

    113. Chang W., Zhang Y., Ping Y., Li K., Qi D.D., Song F.Q. Label-free quantitative proteomics of arbuscular mycorrhizal Elaeagnus angustifolia seedlings provides insights into salt-stress tolerance mechanisms. Frontiers in Plant Science. 2023. Vol. 13. P. 1098260.
    https://doi.org/10.3389/fpls.2022.1098260

     

    114. Yang X., Kwon H., Kim M.Y., Lee S.-H. RNA-seq profiling in leaf tissues of two soybean (Glycine max [L.] Merr.) cultivars that show contrasting responses to drought stress during early developmental stages. Molecular Breeding. 2023. Vol. 43, N 5. P. 42.
    https://doi.org/10.1007/s11032-023-01385-1

     

    115. Tan Y., Wang L. MpDGK2, a novel diacylglycerol kinase from Malus prunifolia, confers drought stress tolerance in transgenic Arabidopsis. Plant Molecular Biology Reporter. 2020. Vol. 38, N 3. P. 452-460.
    https://doi.org/10.1007/s11105-020-01209-y

     

    116. Synek L., Pleskot R., Sekereš J., Serrano N., Vukašinović N., Ortmannová J., Klejchová M., Pejchar P., Batystová K., Gutkowska M., Janková-Drdová E., Marković V., Pečenková T., Šantrůček J., Žárský V., Potocký M. Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit. Proceedings of the National Academy of Sciences. 2021. Vol. 118, N 36. P. e2105287118.
    https://doi.org/10.1073/pnas.2105287118

     

    117. Platre M.P., Noack L.C., Doumane M., Bayle V., Simon M.L.A., Maneta-Peyret L., Fouillen L., Stanislas T., Armengot L., Pejchar P., Caillaud M.-C., Potocký M., Čopič A., Moreau P., Jaillais Y. A сombinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Developmental Cell. 2018. Vol. 45, N 4. P. 465-480.e11.
    https://doi.org/10.1016/j.devcel.2018.04.011

     

    118. Tang F., Xiao Z., Sun F., Shen S., Chen S., Chen R., Zhu M., Zhang Q., Du H., Lu K., Li J., Qu C. Genome-wide identification and comparative analysis of diacylglycerol kinase (DGK) gene family and their expression profiling in Brassica napus under abiotic stress. BMC Plant Biology. 2020. Vol. 20, N 1. P. 473.
    https://doi.org/10.1186/s12870-020-02691-y

     

    119. Sánchez-Sandoval M.E., Racagni Di-Palma G.E., González-Mendoza V.M., Cab-Guillén Y.A., Muñoz-Sanchez J.A., Ramos-Díaz A., Hernández-Sotomayor S.M.T. Phospholipid signaling pathway in Capsicum chinense suspension cells as a key response to consortium infection. BMC Plant Biology. 2021. Vol. 21, N 1. P. 62.
    https://doi.org/10.1186/s12870-021-02830-z

     

    120. Kong L., Ma X., Zhang C., Kim S.-I., Li B., Xie Y., Yeo I.-C., Thapa H., Chen S., Devarenne T. P., Munnik T., He P., Shan L. Dual phosphorylation of DGK5-mediated PA burst regulates ROS in plant immunity. Cell. 2024. Vol. 187, N 3. P. 609-623.
    https://doi.org/10.1016/j.cell.2023.12.030

     

    121. Qi F., Li J., Ai Y., Shangguan K., Li P., Lin F., Liang Y. DGK5β-derived phosphatidic acid regulates ROS production in plant immunity by stabilizing NADPH oxidase. Cell Host & Microbe. 2024. Vol. 32, N 3. P. 425-440.e7.
    https://doi.org/10.1016/j.chom.2024.01.011

     

    122. Shablykin O.V., Chumachenko S.A., Konovalenko A.S., Shablykina O.V., Shishkina S.V., Kozytskyi A.V., Brovarets V.S. Interactions of 3‐acylisocoumarins with ethane‐1,2‐diamines: A simple route to 3,4‐dihydro-6H‐pyrazino[1,2‐b]isoquinolin‐6‐ones and their hydrogenated derivatives. ChemistrySelect. 2024. Vol. 9, N 40. P. e202403740.
    https://doi.org/10.1002/slct.202403740

     

    123. Konovalenko A.S., Shablykin O.V., Shablykina O.V., Moskvina V.S., Shishkina S.V., Kozytskiy A.V., Brovarets V.S. Distinctive features of 3‐acetyl‐ and 3‐benzoyl‐isocoumarins’ interaction with active primary amines. ChemistrySelect. 2023. Vol. 8, N 37. P. e202301380.
    https://doi.org/10.1002/slct.202301380

     

    124. Yevsieieva L.V., Lohachova K.O., Kyrychenko A., Kovalenko S.M., Ivanov V.V., Kalugin O.N. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-COV-2. RSC Advances. 2023. Vol. 13, N 50. P. 35500-35524.
    https://doi.org/10.1039/D3RA06479D

     

    125. Han S.H., Goins C.M., Arya T., et al. Structure-based optimization of ML300-derived, noncovalent inhibitors targeting the severe acute respiratory syndrome coronavirus 3CL protease (SARS-CoV-2 3CLpro). Journal of Medicinal Chemistry. 2022. Vol. 65, N 4. P. 2880-2904.
    https://doi.org/10.1021/acs.jmedchem.1c00598

     

    126. Ivanov V., Lohachova K., Kolesnik Y., Zakharov A., Yevsieieva L., Kyrychenko A., Langer T., Kovalenko S.M., Kalugin O.M. Recent advances in computational drug discovery for therapy against coronavirus SARS-COV-2. ScienceRise: Pharmaceutical Science. 2023. Vol. 6, N 46. P. 4-24.
    https://doi.org/10.15587/2519-4852.2023.290318

     

    127. Crocetti L., Guerrini G. GABAA receptor subtype modulators in medicinal chemistry: an updated patent review (2014-present). Expert Opinion on Therapeutic Patents. 2020. Vol. 30, N 6. P. 409-432.
    https://doi.org/10.1080/13543776.2020.1746764

     

    128. Solomon V.R., Tallapragada V.J., Chebib M., Johnston G.A.R., Hanrahan J.R. GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators. European Journal of Medicinal Chemistry. 2019. Vol. 171. P. 434-461.
    https://doi.org/10.1016/j.ejmech.2019.03.043

     

    129. Volochnyuk D.M., Ryabukhin S.V., Moroz Y.S., Savych O., Chuprina A., Horvath D., Zabolotna Y., Varnek A., Judd D.B. Evolution of commercially available compounds for HTS. Drug Discovery Today. 2019. Vol. 24, N 2. P. 390-402.
    https://doi.org/10.1016/j.drudis.2018.10.016

     

    130. Liu J., Chen T., Norris T., Knappenberger K., Huston J., Wood M., Bostwick R. A high-throughput functional assay for characterization of gamma-aminobutyric acid(A) channel modulators using cryopreserved transiently transfected cells. Assay and Drug Development Technologies. 2008. Vol. 6, N 6. P. 781-786.
    https://doi.org/10.1089/adt.2008.161

     

    131. Sigel E., Ernst M. The benzodiazepine binding sites of GABAA receptors. Trends in Pharmacological Sciences. 2018. Vol. 39, N 7. P. 659-671.
    https://doi.org/10.1016/j.tips.2018.03.006

     

    132. Walters R.J., Hadley S.H., Morris K.D., Amin J. Benzodiazepines act on GABAA receptors via two distinct and separable mechanisms. Nature Neuroscience. 2000. Vol. 3, N 12. P. 1274-1281.
    https://doi.org/10.1038/81800

     

    133. Middendorp S.J., Maldifassi M.C., Baur R., Sigel E. Positive modulation of synaptic and extrasynaptic GABAA receptors by an antagonist of the high affinity benzodiazepine binding site. Neuropharmacology. 2015. Vol. 95. P. 459-467.
    https://doi.org/10.1016/j.neuropharm.2015.04.027

     

    134. Kim J.J., Hibbs R.E. Direct structural insights into GABAA receptor pharmacology. Trends in Biochemical Sciences. 2021. Vol. 46, N 6. P. 502-517.
    https://doi.org/10.1016/j.tibs.2021.01.011

     

    135. Platonov M., Maximyuk O., Rayevsky A., Iegorova O., Hurmach V., Holota Y., Bulgakov E., Cherninskyi A., Karpov P., Ryabukhin S., Krishtal O., Volochnyuk D. Integrated workflow for the identification of new GABAA R positive allosteric modulators based on the in silico screening with further in vitro validation. Case study using Enamine’s stock chemical space. Molecular Informatics. 2024. Vol. 43, N 2. e202300156.
    https://doi.org/10.1002/minf.202300156

     

    136. Groebke K., Weber L., Mehlin F. Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett. 1998. P. 661-663.
    https://doi.org/10.1055/s-1998-1721

     

    137. Bienaymé H., Bouzid K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angewandte Chemie International Edition. 1998. Vol. 37, N. 16. P. 2234-2237.
    https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2234::AID-ANIE2234>3.0.CO;2-R

     

    138. Blackburn C., Guan B., Fleming P., Shiosaki K., Tsai S. Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Letters. 1998. Vol. 39. P. 3635-3638.
    https://doi.org/10.1016/S0040-4039(98)00653-4

     

    139. Boltjes A., Dömling A. The Groebke-Blackburn-Bienaymé reaction. European Journal of Organic Chemistry. 2019. P. 7007-7049.
    https://doi.org/10.1002/ejoc.201901124

     

    140. Gao K., Shaabani S., Xu R., Zarganes-Tzitzikas T., Gao L., Ahmadianmoghaddam M., Groves M.R., Dömling A. Nanoscale, automated, high throughput synthesis and screening for the accelerated discovery of protein modifiers. RSC Medicinal Chemistry. 2021. Vol. 12. P. 809-818.
    https://doi.org/10.1039/D1MD00087J

     

    141. Grygorenko O.O., Radchenko D.S., Dziuba I., Chuprina A., Gubina K.E., Moroz Y.S. Generating multibillion chemical space of readily accessible screening compounds. iScience. 2020. Vol. 23. P. 101681.
    https://doi.org/10.1016/j.isci.2020.101681

     

    142. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 2001. Vol. 23. P. 3-25.
    https://doi.org/10.1016/S0169-409X(96)00423-1

     

    143. Veber D.F., Johnson S.R., Cheng H.-Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry. 2002. Vol. 45. P. 2615-2623.
    https://doi.org/10.1021/jm020017n

     

    144. Mendez D., Gaulton A., Bento A.P., Chambers J., De Veij M., Félix E., Magariños M.P., Mosquera J.F., Mutowo P., Nowotka M., Gordillo-Marañón M., Hunter F., Junco L., Mugumbate G., Rodriguez-Lopez M., Atkinson F., Bosc N., Radoux C.J., Segura-Cabrera A., Hersey A., Leach A.R. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Research. 2019. Vol. 47. D930-D940.
    https://doi.org/10.1093/nar/gky1075

     

    145. Yap C.W. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry. 2011. Vol. 32, N 7. P. 1466-1474.
    https://doi.org/10.1002/jcc.21707

     

    146. Efron B., Hastie T., Johnstone I., Tibshirani R. Least angle regression. Annals of Statistics. 2004. Vol. 32, N 2. P. 407-499.
    https://doi.org/10.1214/009053604000000067

     

    147. Tibshirani R.J. The lasso problem and uniqueness. Electronic Journal of Statistics. 2013. Vol. 7, N 1. P. 1456-1490.
    https://doi.org/10.1214/13-EJS815

     

    148. Guengerich F.P. Cytochrome P450 and chemical toxicology. Chemical Research in Toxicology. 2008. Vol. 21, N 1. Р. 70-83.
    https://doi.org/10.1021/tx700079z

     

    149. Lionta E., Spyrou G., Vassilatis D. K., Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Current Topics in Medicinal Chemistry. 2014. Vol. 14, N 16. Р. 1923-1938.
    https://doi.org/10.2174/1568026614666140929124445

     

    150. Wolber G., Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling. 2005. Vol. 45, N 1. P. 160-169.
    https://doi.org/10.1021/ci049885e

     

    151. Головенко М.Я. Пропоксазепам-новаторський анальгетичний засіб, що гальмує гострий та хронічний біль і має полімодальний механізм дії. Вісник Національної академії наук України. 2021. № 4. С. 76-90.
    https://doi.org/10.15407/visn2021.04.076

     

    152. Головенко М.Я., Ларіонов В.Б., Валіводзь І.П. Спектральна характеристика цитохрому P450 при взаємодії з пропоксазепамом та його метаболітом. Медична та клінічна хімія. 2023. Т. 25, № 2. С. 12-19.
    https://doi.org/10.11603/mcch.2410-681X.2023.i2.13854

     

    153. Larionov V., Golovenko M., Akisheva A., Valivodz I., Litvinova V. Inhibition of cytochrome P450 activities by propoxazepam: assessment for potential drug interactions. In: Modern ways of developing medicine, biology and psychology as methods of protecting humans: collective monograph. Іnternational Science Group. Boston: Primedia. eLaunch, 2025. Р. 66-79.
    https://doi.org/10.46299/ISG.2025.MONO.MED.1.4.1

     

    154. Golovenko M., Reder A., Zupanets I., Bezugla N., Larionov V., Valivodz I. A Phase I study evaluating the pharmacokinetic profile of a novel oral analgesic propoxazepam. Journal of Pre-Clinical and Clinical Research. 2023. Vol. 17, N 3. Р. 138-144.
    https://doi.org/10.26444/jpccr/169426

     

    155. Xia H., Zhang W., Jin Y., Song S., Wang K., Zhang Q. Synthesis of thermally stable and insensitive energetic materials by incorporating the tetrazole functionality into a fused-ring 3,6-dinitropyrazolo[4,3-c]pyrazole framework. ACS Applied Materials & Interfaces. 2019. Vol. 11, N 49. P. 45914-45921.
    https://doi.org/10.1021/acsami.9b17384

     

    156. Zhang J., Parrish D.A., Shreeve J.M. Thermally stable 3,6-dinitropyrazolo[4,3-c]pyrazole-based energetic materials. Asian Journal of Chemistry. 2014. Vol. 9, N 10. P. 2953-2960.
    https://doi.org/10.1002/asia.201402538

     

    157. Woodhead A.J., Erlanson D.A., de Esch I.J.P., Holvey R.S., Jahnke W., Pathuri P. Fragment-to-lead medicinal chemistry publications in 2022. Journal of Medicinal Chemistry. 2024. Vol. 67, N 4. P. 2287-2304.
    https://doi.org/10.1021/acs.jmedchem.3c02070

     

    158. Vydzhak R.N., Panchishin S.Yа. Synthesis of 2-aminoethyl derivatives of pyrazolo[4,3-c]pyrazoles. Ukrainica Bioorganica Acta. 2024. Vol. 19, N 2. P. 10-20.
    https://doi.org/10.15407/bioorganica2024.02.010

     

    159. Kazakova O., Lipkovska N., Barvinchenko V. Keto-enol tautomerism of curcumin in the preparation of nanobiocomposites with fumed silica. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. 2022. Vol. 277. P. 121287-121295.
    https://doi.org/10.1016/j.saa.2022.121287

     

    160. Patra D., Barakat C. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye. Spectrochim. Acta A. Molecular and Biomolecular Spectroscopy. 2011. Vol. 79. P. 1034-1041.
    https://doi.org/10.1016/j.saa.2011.04.016

     

    161. Bajguz A., Orczyk W., Gołębiewska A., Chmur M., Piotrowska-Niczyporuk A. Occurrence of brassinosteroids and influence of 24-epibrassinolide with brassinazole on their content in the leaves and roots of Hordeum vulgare L. cv. Golden Promise. Planta. 2019. Vol. 249, N 1. P. 123-137.
    https://doi.org/10.1007/s00425-018-03081-3

     

    162. Moon J., Park C.-H., Son S.-H., Youn J.-H., Kim S.-K. Endogenous level of abscisic acid down-regulated by brassinosteroids signaling via BZR1 to control the growth of Arabidopsis thaliana. Plant Signaling & Behavior. 2021. Vol. 16, N 9. P. 1926130.
    https://doi.org/10.1080/15592324.2021.1926130

     

    163. Mouchel C.F., Osmont K.S., Hardtke C.S. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature. 2006. Vol. 443, N 7110. P. 458-461.
    https://doi.org/10.1038/nature05130

     

    164. Werner T., Schmülling T. Moonlighting PPKL1 reveals a role of cytokinin in regulating rice grain size. Molecular Plant. 2022. Vol. 15, N 2. P. 216-218.
    https://doi.org/10.1016/j.molp.2021.11.014

     

    165. Alzaabi M.M., Hamdy R., Ashmawy N.S. et al. Flavonoids are promising safe therapy against COVID-19. Phytochemistry Review. 2022. Vol. 21. P. 291-312.
    https://doi.org/10.1007/s11101-021-09759-z

     

    166. De Fazio R., Oppedisano F., Caioni G., Tilocca B., Piras C., Britti D. Plants with antimicrobial activity against Escherichia coli, a meta-analysis for green veterinary pharmacology applications. Microorganisms. 2024. Vol. 12(9). P. 1784.
    https://doi.org/10.3390/microorganisms12091784

     

    167. Pokharel P., Dhakal S., Dozois C.M. The diversity of Escherichia coli pathotypes and vaccination strategies against this versatile bacterial pathogen. Microorganisms. 2023. Vol. 11. P. 344.
    https://doi.org/10.3390/microorganisms11020344

     

    168. Poirel L., Madec J.Y., Lupo A., Schink A.K., Kieffer N., Nordmann P., Schwarz S. Antimicrobial resistance in Escherichia coli. Microbiology Spectrum. 2018. Vol. 6(4).
    https://doi.org/10.1128/microbiolspec.ARBA-0026-2017

     

    169. Sushko I., Novotarskyi S., Körner R., Pandey A.K., Rupp M., Teetz W., Brandmaier S., Abdelaziz A., Prokopenko V.V., Tanchuk V.Y., Todeschini R., Varnek A., Marcou G., Ertl P., Potemkin V., Grishina M., Gasteiger J., Schwab C., Baskin I.I., Palyulin V.A., Radchenko E.V., Welsh W.J., Kholodovych V., Chekmarev D., Cherkasov A., Aires-de-Sousa J., Zhang Q.Y., Bender A., Nigsch F., Patiny L., Williams A., Tkachenko V., Tetko I.V. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. Journal of Computer-Aided Molecular Design. 2011. Vol. 25. P. 533-554.
    https://doi.org/10.1186/1758-2946-3-S1-P20

     

    170. Tetko I.V. Associative neural network. Methods in Molecular Biology. 2008. Vol. 458. P. 185-202.
    https://doi.org/10.1007/978-1-60327-101-1_10

     

    171. Tetko I.V., Sushko I., Pandey A.K., Zhu H., Tropsha A., Papa E., Oberg T., Todeschini R., Fourches D., Varnek A. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. Journal of Chemical Information and Modeling. 2008. Vol. 48. P. 1733-1746.
    https://doi.org/10.1021/ci800151m

     

    172. Muzychka L., Hodyna D., Metelytsia L., Smolii O. Nature-inspired novel quaternary ammonium compounds: synthesis, antibacterial and antibiofilm activity. ChemMedChem. 2025. Vol. 20(5). e202400807.
    https://doi.org/10.1002/cmdc.202400807

     

    173. Semenyuta I., Hodyna D., Kovalishyn V., Demydchuk B., Kachaeva M., Pilyo S., Brovarets V., Metelytsia L. Development and application of in silico models to design new antibacterial 5-amino-4-cyano-1,3-oxazoles against colistin-resistant E. coli strains. Artificial Intelligence Chemistry. 2023. Vol. 1(2). P. 100024.
    https://doi.org/10.1016/j.aichem.2023.100024

     

    174. Trott O., Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry. 2010. Vol. 31. P. 455-461.
    https://doi.org/10.1002/jcc.21334

     

    175. Li Y., Geng J., Liu Y., Yu S., Zhao G. Thiadiazole – a promising structure in medicinal chemistry. ChemMedChem. 2013. Vol. 8, N 1. P. 27-41.
    https://doi.org/10.1002/cmdc.201200355

     

    176. Jain A.K., Sharma S., Vaidya A., Ravichandran V., Agrawal R.K. 1,3,4-Thiadiazole and its derivatives: A review on recent progress in biological activities. Chemical Biology & Drug Design. 2013. Vol. 81, N 5. P. 557-576.
    https://doi.org/10.1111/cbdd.12125

     

    177. Sekkak H., Mojahidi S., Rakib E.-M., Abouricha S., Kerbal A., Aiello C., Viale M. Synthesis and antiproliferative evaluation of spirothiadiazolopyridazine derivatives. Letters in Drug Design & Discovery. 2010. Vol. 7, N 10. P. 743-746.
    https://doi.org/10.2174/1570180811007010743

     

    178. Abouricha S., Rakib E.-M., Benchat N., Alaoui M., Allouchi H., El Bali B. Facile synthesis of new spirothiadiazolopyridazines by 1,3‐dipolar cycloaddition. Synthetic Communications. 2005. Vol. 35, N 16. P. 2213-2221.
    https://doi.org/10.1080/00397910500182697

     

    179. Dogan H.N., Duran A., Rollas S., Sener G., Uysal M.K., Gülen D. Synthesis of new 2,5-disubstituted-1,3,4-thiadiazoles and preliminary evaluation of anticonvulsant and antimicrobial activities. Bioorganic & Medicinal Chemistry. 2002. Vol. 10, N 9. P. 2893-2898.
    https://doi.org/10.1016/S0968-0896(02)00143-8

     

    180. Molteni V., Li X., Nabakka J., Liang F., Wityak J., Koder A., Vargas L., Romeo R., Mitro N., Mak P.A., Seidel H.M., Haslam J.A., Chow D., Tuntland T., Spalding T.A., Brock A., Bradley M., Castrillo A., Tontonoz P., Saez E. N-Acylthiadiazolines, a new class of liver X receptor agonists with selectivity for LXRβ. Journal of Medicinal Chemistry. 2007. Vol. 50, N 17. P. 4255-4259.
    https://doi.org/10.1021/jm070453f

     

    181. Mlostoń G., Urbaniak K., Utecht G., Lentz D., Jasiński M. Trifluoromethylated 2,3-dihydro-1,3,4-thiadiazoles via the regioselective [3+2]-cycloadditions of fluorinated nitrile imines with aryl, hetaryl, and ferrocenyl thioketones. Journal of Fluorine Chemistry. 2016. Vol. 192, Part A. P. 147-154.
    https://doi.org/10.1016/j.jfluchem.2016.10.018

     

    182. Mykhaylychenko S.S., Pikun N.V., Rusanov E.B., Rozhenko A.B., Shermolovich Yu.G. Synthesis of 2-polyfluoroalkyl-2,3-dihydro-1,3,4-thiadiazoles via regioselective [3+2] cycloaddition of nitrile imines to polyfluoroalkanethioamides. Chemistry of Heterocyclic Compounds. 2017. Vol. 53, N 11. P. 1268-1276.
    https://doi.org/10.1007/s10593-018-2199-9

     

    183. Utecht-Jarzyńska G., Mykhaylychenko S.S., Rusanov E.B., Shermolovich Yu.G., Jasiński M., Mlostoń G. Highly fluorinated 2,3-dihydro-1,3,4-thiadiazole derivatives via (3+2)-cycloadditions of thioamides with nitrile imines derived from trifluoroacetonitrile. Journal of Fluorine Chemistry. 2021. Vol. 242. Art. No.109702.
    https://doi.org/10.1016/j.jfluchem.2020.109702

     

    184. Wada F., Arata R., Goto T., Kikukawa K., Matsuda T. New application of crown ethers. iii. synthesis of 4′-hydroxybenzocrown ethers and their bis(benzocrown ether)s linked by poly(oxyethylene) chain. Bulletin of the Chemical Society of Japan. 2006. Vol. 53, N 7. P. 2061-2063.
    https://doi.org/10.1246/bcsj.53.2061

     

    185. Bourgoin M., Wong K.H., Hui J.Y., Smid J. Interactions of macrobicyclic polyethers with ions and ion pairs of picrate salts. Journal of the American Chemical Society. 1975. Vol. 97, N 12. P. 3462-3467.
    https://doi.org/10.1021/ja00845a031

     

    186. Dutt N.K., Majumdar D. Chemistry of lanthanons-XXXIV: Methyl salicylato-complexes of lanthanons. Journal of Inorganic and Nuclear Chemistry. 1972. Vol. 34, N 2. P. 657-660.
    https://doi.org/10.1016/0022-1902(72)80446-9

     

    187. Ahmed Z., Carvalho R., dos Santos A., Gambassi F., Bandini E., Marvelli L., Maini L., Barbieri A., Cremona M. Highly luminescent Europium(III) complexes in solution and PMMA-doped films for bright red electroluminescent devices. Molecules. 2023. Vol. 28. P. 4371.
    https://doi.org/10.3390/molecules28114371

     

    188. Tan W.-J., Yang Y.-C., Zhou Y., Huang L.-P., Xu L., Chen Q.-F., Yu L.-J., Xiao S. Diacylglycerol acyltransferase and diacylglycerol kinase modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress. Plant Physiology. 2018. Vol. 177, N 3. P. 1303-1318.
    https://doi.org/10.1104/pp.18.00402

     

    189. Cacas J.-L., Gerbeau-Pissot P., Fromentin J., Cantrel C., Thomas D., Jeannette E., Kalachova T., Mongrand S., Simon-Plas F., Ruelland E. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein. Plant, Cell & Environment. 2017. Vol. 40, N 4. P. 585-598.
    https://doi.org/10.1111/pce.12771

     

    190. Ikeura Y., Doi T., Fujishima A., Natsugari H. Enantioselective synthesis of an axially chiral 1,7-naphthyridine-6-carboxamide derivative having potent antagonist activity at the NK1 receptor. Chemical Communications. 1998. Vol. 19. P. 2141-2142.
    https://doi.org/10.1039/a805333b

     

    191. Ikeura Y., Tanaka T., Kiyota Y., Morimoto S., Ogino M., Ishimaru T., Kamo I., Doi T., Natsugari H. Potent NK1 receptor antagonists: synthesis and antagonistic activity of various heterocycles with an N-(3,5-bis(trifluoromethyl)benzyl)-N-methylcarbamoyl substituent. Chemical and Pharmaceutical Bulletin. 1997. Vol. 45, N 10. P. 1642-1652.
    https://doi.org/10.1248/cpb.45.1642

     

    192. Ukita T., Nakamura Y., Kubo A., Yamamoto Y., Moritani Y., Saruta K., Higashijima T., Kotera J., Fujishige K., Takagi M., Kikkawa K., Omori K. 1,7- and 2,7-Naphthyridine derivatives as potent and highly specific PDE5 inhibitors. Bioorganic & Medicinal Chemistry Letters. 2003. Vol. 13, N 14. P. 2341-2345.
    https://doi.org/10.1016/S0960-894X(03)00440-2

     

    193. Beck D.E., Reddy P.V.N., Lv W., Abdelmalak M., Tender G.S., Lopez S., Agama K., Marchand C., Pommier Y., Cushman M. Investigation of the structure-activity relationships of aza-a-ring indenoisoquinoline topoisomerase i poisons. Journal of Medicinal Chemistry. 2016. Vol. 59, N 8. P. 3840-3853.
    https://doi.org/10.1021/acs.jmedchem.6b00003

     

    194. Natsugari H., Ikeura Y., Kiyota Y., Ishichi Y., Ishimaru T., Saga O., Shirafuji H., Tanaka T., Kamo I. Novel, potent, and orally active substance P antagonists: synthesis and antagonist activity of N-benzylcarboxamide derivatives of pyrido[3,4-b]pyridine. Journal of Medicinal Chemistry. 1995. Vol. 38, N 16. P. 3106-3120.
    https://doi.org/10.1021/jm00016a014

     

    195. Konovalenko A., Shablykin O., Shablykina O., Kozytskiy A., Brovarets V. Convenient and versatile method of 8-amino-6-(2-R-thiazol-4-yl)¬1,7-naphthyridines synthesis. Current Chemistry Letters. 2024. Vol. 13, N 1. P. 163-172.
    https://doi.org/10.5267/j.ccl.2023.7.004

     

    196. Lukin O., Shivanyuk A., Dolgonos G.A., Gerasov A., Mandzhulo A., Fetyukhin V. Spirocyclizations of nortropanes. Synthesis. 2025. Vol. 57, N 8. P. 1375-1401.
    https://doi.org/10.1055/a-2503-2459

     

    197. Mandzhulo A., Vashchenko I., Lukin O., Shishkina S., Dolgonos G.A., Gerasov A., Yepishev V., Samofalova D., Fetyukhin V., Shivanyuk A. Spirocyclic hybrids of nortropane and 1,3-oxazinan-2-one fragments. Synthesis. 2024. Vol. 56, N 7. P. 2709-2730.
    https://doi.org/10.1055/a-2335-4444

     

    198. Lamaoui M., Jemo M., Datla R., Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry. 2018. Vol. 6, N 26.
    https://doi.org/10.3389/fchem.2018.00026

     

    199. Chávez-Arias C.C., Ligarreto-Moreno G.A., Ramírez-Godoy A., Restrepo-Díaz H. Maize responses challenged by drought, elevated daytime temperature and arthropod herbivory stresses: a physiological, biochemical and molecular view. Frontiers in Plant Science. 2021. Vol. 12, № 702841.
    https://doi.org/10.3389/fpls.2021.702841

     

    200. Aslam M., Maqbool M.A., Cengiz R. Effects of drought on maize. In: Drought stress in maize (Zea mays L.): effects, resistance mechanisms, global achievements and biological strategies for improvement. Springer Briefs in Agriculture, 1st ed. 2015. 82 p.
    https://doi.org/10.1007/978-3-319-25442-5_2

     

    201. Sosnowski J., Truba M., Vasileva V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture. 2023. Vol. 13, N 3. P. 724.
    https://doi.org/10.3390/agriculture13030724

     

    202. Rivas M.Á., Friero I., Alarcón M.V., Salguero J. Auxin-cytokinin balance shapes maize root architecture by controlling primary root elongation and lateral root development. Frontiers in Plant Science. 2022. Vol. 13, № 836592.
    https://doi.org/10.3389/fpls.2022.836592

     

    203. Tsygankova V.A., Voloshchuk I.V., Pilyo S.H., Klyuchko S.V., Brovarets V.S. Enhancing sorghum productivity with Methyur, Kamethur, and Ivin plant growth regulators. Biology and Life Sciences Forum. 2023. Vol. 27, N 1. P. 36.
    https://doi.org/10.3390/IECAG2023-15222

     

    204. Lichtenthaler H.K., Buschmann C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS Spectroscopy current protocols in food analytical chemistry (CPFA). John Wiley and Sons, New York, 2001. F4.3.1-F4.3.8.
    https://doi.org/10.1002/0471142913.faf0403s01

     

    205. Bhawale R.T., Chillal A.S., Kshirsagar U.A. 4H-Pyrido[1,2-a]pyrimidin-4-one, biologically important fused heterocyclic scaffold: Synthesis and functionalization. Journal of Heterocyclіс Chemistry. 2023. Vol. 60. Р. 1356-1373.
    https://doi.org/10.1002/jhet.4637

     

    206. Aljuhani A., Ahmed H.E., Ihmaid S.K., Omar A.M., Althagfan S.S., Alahmadi Y.M., Ahmad I., Patel H., Ahmed S., Almikhlafi M.A., Zayed M.F., Turkistani S.A., Abulkhair S.H., Almaghrabi M., Salama S.A., Al-Karmalawy A.A., Abulkhair H.S. In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-M Pro inhibitors. RSC Advances. 2022. Vol. 12. Р. 26895-26907.
    https://doi.org/10.1039/D2RA04015H

     

    207. Dong Z., Wang Z., Guo Z.Q., Gong S., Zhang T., Liu J., Luo C., Jiang H., Yang C.G. Structure-activity relationship of SPOP inhibitors against kidney cancer. Journal of Medicinal Chemistry. 2020. Vol. 63, N 9. Р. 4849-4866.
    https://doi.org/10.1021/acs.jmedchem.0c00161

     

    208. Yuan P., Jiang X., Wang S., Shao X., Yang Q., Qian X. X-ray structure and molecular docking guided discovery of novel chitinase inhibitors with a scaffold of dipyridopyrimidine-3-carboxamide. Journal of Agricultural and Food Chemistry. 2020. Vol. 68. P. 13584-13593.
    https://doi.org/10.1021/acs.jafc.0c03742

     

    209. Jiang X., Kumar A., Motomura Y., Liu T., Zhou Y., Moro K., Zhang K YJ., Yang Q. A series of compounds bearing a dipyrido-pyrimidine scaffold acting as novel human and insect pest chitinase inhibitors. Journal of Medicinal Chemistry. 2020. Vol. 63, N 3. P. 987-1001.
    https://doi.org/10.1021/acs.jmedchem.9b01154

     

    210. Bathula R., Satla S.R., Kyatham R., Gangarapu K. One pot synthesis and molecular docking studies of substituted 1H-pyrido[2,1-b]quinazolines as apoptosis-inducing anticancer agents. Asian Pacific Journal of Cancer Prevention. 2020. Vol. 21, N 2. Р. 411-421.
    https://doi.org/10.31557/APJCP.2020.21.2.411

     

    211. Manikanttha M., Deepti K., Tej M.B., Reddy A.G., Kapavarapu R., Barange D.K., Rao M.B., Pal M. Ultrasound assisted Cu-catalyzed Ullmann-Goldberg type coupling-cyclization in a single pot: Synthesis and in silico evaluation of 11H-pyrido [2,1-b]quinazolin-11-ones against SARS-CoV-2 RdRp. Journal of Molecular Structure. 2023. Vol. 1280. Р. 135044.
    https://doi.org/10.1016/j.molstruc.2023.135044

     

    212. Kim D.H. Reactions of ethyl 4-chloro-5-pyrimidinecarboxylates with 2-aminopyridine. Synthesis of 5H-pyrido[1,2-а]pyrimido[5,4-e]pyrimidin-5-ones and 5H-pyrido[1,2-a]pyrimido[4,5-d]pyrimidin-5-ones and rearrangement of the former to the latter. Journal of Heterocyclіс Chemistry. 1985. Vol. 22. Р. 173-176.
    https://doi.org/10.1002/jhet.5570220142

     

    213. Popov A., Kapitanov I., Serdyuk A., Shumeiko A. Reactivity of nucleo¬philes and α-effect in substitution processes at electron – deficiency centers (Part 1). Ukrainian Chemistry Journal. 2020. Vol. 86, N 7. P. 3-31.
    https://doi.org/10.33609/2708-129X.86.7.2020.3-31

     

    214. Singh N., Karpichev Ye., Tiwari A., Kuca K., Ghosh K. Oxime functionality in surfactant self-assembly: An overview on combating toxicity of organophosphates. Journal of Molecular Liquids. 2015. Vol. 208. P. 237-252.
    https://doi.org/10.1016/j.molliq.2015.04.010

     

    215. Singh N., Karpichev Y., Sharma R., Arvind K., Ghosh K. From α-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxa¬mate ion towards esterolytic reactions in micelles. Organic & Biomolecular Chemistry. 2015. Vol. 13, N 10. P. 2827-2848.
    https://doi.org/10.1039/C4OB02067G

     

    216. Singh N., Karpichev Y., Gupta B., Satnami M., Kuca K. Physicochemical properties and supernucleophilicity of oximefunctionalized surfactants: hydrolytic catalysts toward dephosphorylation of di- and triphosphate esters. Journal of Physical Chemistry B. 2013. Vol. 117. P. 3806-3817.
    https://doi.org/10.1021/jp310010q

     

    217. Шумейко О., Бураков М. Димерні функціоналізовані поверхнево-активні речовини у процесах деструкції складних естерів фосфору та сірки. Український журнал природничих наук. 2023. № 4. С. 96-103.
    https://doi.org/10.32782/naturaljournal.4.2023.11

     

    218. Gao Y., Zhang Y., Zhao L., Xu B., Romsted L. Effects of interfacial specific cations and water molarities transitions by chemical trapping: the specific ion-pair/hydration model. Physical Chemistry Chemical Physics. 2019. Vol. 21, N 12. P. 8633-8644.
    https://doi.org/10.1039/C8CP05987J

     

    219. Qu Y., An Z., Zhuang B., Jing W., Zhang Q., Zhang W. Copper amine oxidase and phospholipase D act independently in abscisic acid (ABA)-induced stomatal closure in Vicia faba and Arabidopsis. Journal of Plant Research. 2014. Vol. 127, N 4. P. 533-544.
    https://doi.org/10.1007/s10265-014-0633-3

     

    220. Echevarría-Machado I., Muñoz-Sánchez A., Loyola-Vargas V.M., Hernández-Sotomayor S.M.T. Spermine stimulation of phospholipase C fromCatharanthus roseus transformed roots. Journal of Plant Physiology. 2002. Vol. 159, N 11. P. 1179-1188.
    https://doi.org/10.1078/0176-1617-00893

     

    221. Piña-Chable M.A.L., De Los Santos-Briones C., Muñoz-Sánchez J.A., Machado I.E.A., Hernández-Sotomayor S.M.T. Effect of different inhibitors on phospholipase C activity in Catharanthus roseus transformed roots. Prostaglandins & Other Lipid Mediators. 1998. Vol. 56, N 1. P. 19-31.
    https://doi.org/10.1016/S0090-6980(98)00037-9

     

    222. Echevarría-Machado I., Ramos-Díaz A., Brito-Argáez L., Racagni-Di Palma G., Loyola-Vargas V.M., Hernández-Sotomayor S.M.T. Polyamines modify the components of phospholipids-based signal transduction pathway in Coffea arabica L. cells. Plant Physiology and Biochemistry. 2005. Vol. 43, N 9. P. 874-881.
    https://doi.org/10.1016/j.plaphy.2005.08.013

     

    223. Zarza X., Van Wijk R., Shabala L., Hunkeler A., Lefebvre M., Rodriguez-Villalón A., Shabala S., Tiburcio A.F., Heilmann I., Munnik T. Lipid kinases PIP5K7 and PIP5K9 are required for polyamine-triggered K+ efflux in Arabidopsis roots. Plant Journal. 2020. Vol. 104, N 2. P. 416-432.
    https://doi.org/10.1111/tpj.14932

     

    224. Pejchar P., Scherer G. E., Martinec J., Assaying nonspecific phospholipase C activity, in Plant Lipid Signaling Protocols, T. Munnik and I. Heilmann, Editors. 2013, Humana Press. P. 193-203.
    https://doi.org/10.1007/978-1-62703-401-2_18

     

    225. Qin C., Li M., Qin W., Bahn S.C., Wang C., Wang X. Expression and characterization of Arabidopsis phospholipase Dγ2. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 2006. Vol. 1761, N 12. P. 1450-1458.
    https://doi.org/10.1016/j.bbalip.2006.09.017

     

    226. Jones A.M., Xuan Y., Xu M., Wang R.S., Ho C.H., Lalonde S., You C.H., Sardi M.I., Parsa S.A., Smith-Valle E., Su T., Frazer K.A., Pilot G., Pratelli R., Grossmann G., Acharya B.R., Hu H.C., Engineer C., Villiers F., Ju C., Takeda K., Su Z., Dong Q., Assmann S.M., Chen J., Kwak J.M., Schroeder J.I., Albert R., Rhee S.Y., Frommer W.B. Border control–a membrane-linked interactome of Arabidopsis. Science. 2014. Vol. 344, N 6185. P. 711-716.
    https://doi.org/10.1126/science.1251358

     

    227. Cacas J.-L., Gerbeau-Pissot P., Fromentin J., Cantrel C., Thomas D., Jeannette E., Kalachova T., Mongrand S., Simon-Plas F., Ruelland E. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein. Plant, Cell & Environment. 2017. Vol. 40, N 4. P. 585-598.
    https://doi.org/10.1111/pce.12771

     

    228. Kalachova T., Škrabálková E., Pateyron S., Soubigou-Taconnat L., Djafi N., Collin S., Sekereš J., Burketová L., Potocký M., Pejchar P., Ruelland E. DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis. Plant Physiology. 2022. Vol. 190, N 3. P. 1978-1996.
    https://doi.org/10.1093/plphys/kiac354

     

    229. Di Sandro A., Del Duca S., Verderio E., Hargreaves Alan J., Scarpellini A., Cai G., Cresti M., Faleri C., Iorio Rosa A., Hirose S., Furutani Y., Coutts Ian G.C., Griffin M., Bonner Philip L.R., Serafini-Fracassini D. An extracellular transglutaminase is required for apple pollen tube growth. Biochemical Journal. 2010. Vol. 429, N 2. P. 261-271.
    https://doi.org/10.1042/BJ20100291

     

    230. Echevarría-Machado I., Ku-González A., Loyola-Vargas V.M., Hernández-Sotomayor S.M.T. Interaction of spermine with a signal transduction pathway involving phospholipase C, during the growth of Catharanthus roseus transformed roots. Physiologia Plantarum. 2004. Vol. 120, N 1. P. 140-151.
    https://doi.org/10.1111/j.0031-9317.2004.0212.x

     

    231. Zhong M., Song R., Wang Y., Shu S., Sun J., Guo S. TGase regulates salt stress tolerance through enhancing bound polyamines-mediated antioxidant enzymes activity in tomato. Environmental and Experimental Botany. 2020. Vol. 179. P. 104191.
    https://doi.org/10.1016/j.envexpbot.2020.104191

     

    232. Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics. 2008. Vol. 2008. P. 420747.
    https://doi.org/10.1155/2008/420747

     

    233. Xu Y., Zhang Z., Shi J., Liu X., Tang W. Recent developments of synthesis and biological activity of sultone scaffolds in medicinal chemistry. Arabian Journal of Chemistry. 2021. Vol. 14, N 4. P. 103037.
    https://doi.org/10.1016/j.arabjc.2021.103037

     

    234. Mondal S. Recent developments in the synthesis and application of sultones. Chemical Reviews. 2012. Vol. 112, N 10. P. 5339-5355.
    https://doi.org/10.1021/cr2003294

     

    235. Poliudov A.O., Havryshko D.Y., Krasilov D.I., Sorokin M.D., Milokhov D.S., Virych P.A., Virych P.A., Omelian Т.V., Kysil A.I., Dobrydnev A.V. Exploring the reactivity of 5,5-dimethyl-1,2-oxathiolan-4-one 2,2-dioxide and their spirocyclopropyl counterpart. Tetrahedron. 2025. Vol. 181. P. 134684.
    https://doi.org/10.1016/j.tet.2025.134684

     

    236. Nicolaou K.C., Snyder S.A., Montagnon T., Vassilikogiannakis G. The Diels-Alder reaction in total synthesis. Angewandte Chemie International Edition. 2002. Vol. 41, N 10: P. 1668-1698.
    https://doi.org/10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z

     

    237. Roush W.R. Intramolecular Diels-Alder Reactions. In Trost B.M., Flemming I. (eds.). Comprehensive Organic Synthesis. 1991. Vol. 5. P. 513-550.
    https://doi.org/10.1016/B978-0-08-052349-1.00131-1

     

    238. Amii H., Kobayashi T., Tarasawa H., Uneyama K. Difluorinated Danishefsky’s diene:  a versatile C4 building block for the fluorinated six-membered rings. Organic Letters. 2001. Vol. 3, N 20. P. 3103-3105.
    https://doi.org/10.1021/ol0163631

     

    239. Hojo M., Masuda R., Okada E. A facile synthesis of 2,4-dialkoxy-, 2-alkoxy-4-phenoxy-, and 2,4-diphenoxy-6-trifluoromethyl-3,4-dihydro-2H-pyrans. Hetero-diels-alder reactions of trans-β-trifluoroacetylvinyl ethers with various vinyl ethers. Synthesis. 1989. N 03. P. 215-217.
    https://doi.org/10.1055/s-1989-27206

     

    240. Schulz H., Wagner H. Synthese und umwandlungsprodukte des acroleins. Angewandte Chemie. 1950. Vol. 62, N 5. P. 105-118.
    https://doi.org/10.1002/ange.19500620502

     

    241. Desimoni G., Tacconi G. Heterodiene syntheses with .alpha.,.beta.-unsaturated carbonyl compounds. Chemical Reviews. 1975. Vol. 75, N 6. P. 651-692.
    https://doi.org/10.1021/cr60298a001

     

    242. Uroos M., Pitt P., Harwood L.M., Lewis W., Blake A.J., Hayes C.J. Total synthesis of (−)-aritasone via the ultra-high pressure hetero-Diels-Alder dimerisation of (−)-pinocarvone. Organic & Biomolacular Chemistry. 2017. Vol. 15, N 40. P. 8523-8528.
    https://doi.org/10.1039/C7OB02204B

     

    243. Tordeux M., Wakselman C. Synthese de la trifluoromethyl-vinyl-cetone. Journal of Fluorine Chemistry. 1982. Vol. 20, N 3. P. 301-306.
    https://doi.org/10.1016/S0022-1139(00)82221-6

     

    244. Von Werner K., Gisser A. The synthesis and some reactions of pentafluoroethyl vinyl ketone. Journal of Fluorine Chemistry. 1977. Vol. 10, N 5. P. 387-394.
    https://doi.org/10.1016/S0022-1139(00)82144-2

     

    245. Musumeci F., Fallacara A.L., Brullo C., Grossi G., Botta L., Calandro P., Chiariello M., Kissova M., Crespan E., Maga G., Schenone S. Identification of new pyrrolo[2,3-d]pyrimidines as Src tyrosine kinase inhibitors in vitro active against Glioblastoma. European Journal of Medicinal Chemistry. 2017. Vol. 127. P. 369-378.
    https://doi.org/10.1016/j.ejmech.2016.12.036

     

    246. Bandaru P.K., Nidasanametla S.K.R., Shyamala P. Amide functionalized novel pyrrolo-pyrimidine derivative as anticancer agents: synthesis, characterization and molecular docking studies. Anti-Cancer Agents in Medicinal Chemistry. 2025. Vol. 25, N 6. P. 420-432.
    https://doi.org/10.2174/0118715206333935241004070350

     

    247. Sai Madhurya M., Thakur V., Dastari S., Shankaraiah N. Pyrrolo[2,3-d]pyrimidines as potential kinase inhibitors in cancer drug discovery: A critical review. Biological Chemistry Journals. 2024. Vol. 153. P. 107867.
    https://doi.org/10.1016/j.bioorg.2024.107867

     

    248. Ali E.M.H., Abdel-Maksoud M.S., Oh C.H. Thieno[2,3-d]pyrimidine as a promising scaffold in medicinal chemistry: Recent advances. Bioorganic & Medicinal Chemistry. 2019. Vol. 27, N 7. P. 1159-1194.
    https://doi.org/10.1016/j.bmc.2019.02.044

     

    249. Brady L.E., Herbst R.M. Tetrazolopyrimidines: their synthesis and structure. Journal of Organic Chemistry. 1959. Vol. 24, N 7. P. 922-926.
    https://doi.org/10.1021/jo01089a008

     

    250. Sleebs B.E., Nikolakopoulos G., Street I.P., Falk H., Baell J.B. Identification of 5,6-substituted 4-aminothieno[2,3-d]pyrimidines as LIMK1 inhibitors. Bioorganic & Medicinal Chemistry Letter. 2011. Vol. 21, N 19. P. 5992-5994.
    https://doi.org/10.1016/j.bmcl.2011.07.050

     

    251. Drach B.S., Sviridov E.P., Lavrenyk T.Y. Reaction of alpha-acylamino-beta, beta-dichloroacrylonitriles with primary amines. Journal of Organic Chemistry. USSR (Engl. Transl.). 1974. Vol. 10. P. 1278.
    https://doi.org/10.1002/chin.197436249

     

    252. Drach B.S., Sviridov E.P., Kisilenko A.A., Kirsanov A.V. Reaction of secondary amines with N-acyl-(2,2-dichlorovinyl) amines and N-acyl-1-cyano-(2,2-dichloro-vinyl) amines. Journal of Organic Chemistry. USSR (Engl. Transl.). 1973. Vol. 9. P. 1842.
    https://doi.org/10.1002/chin.197350337

     

    253. El-Metwally S.A., Abou-El-Regal M.M., Eissa I.H., Mehany A.B.M., Mahdy H.A., Elkady H., Elwan A., Elkaeed E.B. Discovery of thieno[2,3-d]pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Bioorganic Chemistry. 2021. Vol. 112. P. 104947.
    https://doi.org/10.1016/j.bioorg.2021.104947

     

    254. Temburnikar K.W., Zimmermann S.C., Kim N.T., Ross C.R., Gelbmann C., Salomon C.E., Wilson G.M., Balzarini J., Seley-Radtke K.L. Antiproliferative activities of halogenated thieno[3,2-d]pyrimidines. Bioorganic & Medicinal Chemistry. 2014. Vol. 22, N 7. P. 2113-2122.
    https://doi.org/10.1016/j.bmc.2014.02.033

     

    255. Sobh E.A., Dahab M.A., Elkaeed E.B., Alsfouk B.A., Ibrahim I.M., Metwaly A.M., Eissa I.H. A novel thieno[2,3-d]pyrimidine derivative inhibiting vascular endothelial growth factor receptor-2: A story of computer-aided drug discovery. Drug Development Research. 2023. Vol. 84, N 6. P. 1247-1265.
    https://doi.org/10.1002/ddr.22083

     

    256. Bussenius J., Anand N.K., Blazey C.M., Bowles O.J., Bannen L.C., Chan D.S., Chen B., Co E.W., Costanzo S., DeFina S.C., Dubenko L., Engst S., Franzini M., Huang P., Jammalamadaka V., Khoury R.G., Kim M.H., Klein R.R., Laird D., Le D.T., Rice K.D. Design and evaluation of a series of pyrazolopyrimidines as p70S6K inhibitors. Bioorganic & Medicinal Chemistry Letter. 2012. Vol. 22, N 6. P. 2283-2286.
    https://doi.org/10.1016/j.bmcl.2012.01.105

     

    257. Nakashita H., Yasuda, M., Nitta T., Asami T., Fujioka S., Arai Y., Sekimata K., Takatsuto S., Yamaguchi I., Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant Journal. 2003. P. 33, N 5. P. 887-898.
    https://doi.org/10.1046/j.1365-313X.2003.01675.x

     

    258. De Vleesschauwer D., Van Buyten E., Satoh K., Balidion J., Mauleon R., Choi I.-R., Vera-Cruz C., Kikuchi S., Höfte M. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiology. 2012. Vol. 158, N 4. P. 1833-1846.
    https://doi.org/10.1104/pp.112.193672

     

    259. Park C.H., Park Y.J., Youn J.H., Roh J., Kim S.-K. Brassinosteroids and salicylic acid mutually enhance endogenous content and signaling to show a synergistic effect on pathogen resistance in Arabidopsis thaliana. Journal of Plant Biology. 2023. Vol. 66. P. 181-192.
    https://doi.org/10.1007/s12374-023-09390-9

     

    260. Winter G.E., Buckley D.L., Paulk J., Roberts J.M., Souza A., Dhe-Paganon S., Bradner J.E. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 2015. Vol. 348 (6241). P. 1376.
    https://doi.org/10.1126/science.aab1433

     

    261. Fischer E.S., Böhm K., Lydeard J.R., Yang H., Stadler M.B., Cavadini S., Nagel J., Serluca F., Acker V., Lingaraju G.M., et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature. 2014. Vol. 512. P. 49.
    https://doi.org/10.1038/nature13527

     

    262. Dong G., Ding Y., He S., Sheng C. PROTACs: A novel strategy for drug discovery and therapeutic applications. Journal of Medicinal Chemistry. 2021. Vol. 64. P. 10606-10620.
    https://doi.org/10.1021/acs.jmedchem.1c00895

     

    263. Calcaterra A.D., Acquarica I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. Journal of Pharmaceutical and Biomedical Analysis. 2018. Vol. 147. P. 323-340.
    https://doi.org/10.1016/j.jpba.2017.07.008

     

    264. Caner H., Groner E., Levy L. Trends in the development of chiral drugs. Drug Discovery Today. 2004. Vol. 9. P. 105-110.
    https://doi.org/10.1016/S1359-6446(03)02904-0

     

    265. Cabré A., Verdaguer X., Rieraa A. Enantioselective synthesis of β-methyl amines via iridium-catalyzed asymmetric hydrogenation of N-sulfonyl allyl amines. Advanced Synthesis & Catalysis. 2019. Vol. 361, N 18. P. 4196-4200.
    https://doi.org/10.1002/adsc.201900748

     

    266. Lin G.-Q., Zhang J.-G., Cheng J.-F. Overview of chirality and chiral drugs. In Chiral Drugs, John Wiley & Sons, Inc., 2011. P. 3-28.
    https://doi.org/10.1002/9781118075647.ch1

     

    267. Ramesh P., Suman D., Reddy K. Asymmetric synthetic strategies of (R)-(-) -baclofen: an antispastic drug. Synthesis. 2018. Vol. 50. P. 211-226.
    https://doi.org/10.1055/s-0036-1590938

     

    268. Smilovic I.G., Cluzeau J., Richter F., Nerdinger S., Schreiner E., Laus G., Schottenberger H. Synthesis of enantiopure antiobesity drug lorcaserin. Bioorganic Medical Chemistry. 2018. Vol. 26, N 9. P. 2686-2690.
    https://doi.org/10.1016/j.bmc.2018.02.038

     

    269. Ornstein P.L., Zimmerman D.M., Arnold M.B., Bleisch T.J., et al. Biarylpropylsulfonamides as novel, potent potentiators of 2-amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)-propanoic acid (AMPA) receptors. Journal Medical Chemistry. 2000. Vol. 43, N 23. P. 4354-4358.
    https://doi.org/10.1021/jm0002836

     

    270. Moe S.T., Shimizu S.M., Smith D.L., Van Wagenen B.C., DelMar E.G., Balandrin M.F., Chien Y., Raszkiewicz J.L., Artman L.D., Mueller A.L., Lobkovsky E., Clardy J. Synthesis, biological activity, and absolute stereochemical assignment of NPS 1392: a potent and stereose-lective NMDA receptor antagonist. Bioorganic & Medicinal Chemistry Letters. 1999. Vol. 9, N 14. P. 1915-1920.
    https://doi.org/10.1016/S0960-894X(99)00317-0

     

    271. Zhang J., Liu Ch., Wang X., Chen J., Zhang Z., Zhang W. Rhodium-catalyzed asymmetric hydrogenation of β-branched enamides for the synthesis of β-stereogenic amines. Chemical Communication. 2018. Vol. 54. P. 6024-6027.
    https://doi.org/10.1039/C8CC02798F

     

    272. Meng J., Li X.-H., Han Zh.-Y. Enantioselective hydroaminomethylation of olefins enabled by Rh/brønsted acid relay catalysis. Organic Letters. 2017. Vol. 19, N 5. P. 1076-1079.
    https://doi.org/10.1021/acs.orglett.7b00100

     

    273. Yilmaz H., Topal G., Cakmak R., Hosgoren H. Resolution of (±)-β-methylphenylethylamine by a novel chiral stationary phase for Pirkle-type column chromatography. Chirality. 2010. Vol. 22, N 2. P. 252-257.
    https://doi.org/10.1002/chir.20736

     

    274. Maa M., Feng W., Guo F., Yang Ch., Xia W. Photochemical studies on acyclic alkyl aromatic ketones in the solid state: asymmetric induction and increased chemoselectivity. Tetrahedron. 2012. Vol. 68, N 43. P. 8875-8879.
    https://doi.org/10.1016/j.tet.2012.08.040

     

    275. Hebeisen P., Weiss U., Alker A., Staempfli A. Ring opening of cyclic sulfamidates with bromophenyl metal reagents: complementarity of sulfamidates and aziridines. Tetrahedron Letters. 2011. Vol. 52, N 41. P. 5229-5233.
    https://doi.org/10.1016/j.tetlet.2011.07.123

     

    276. Fuchs C.S., Hollauf M., Meissner M., et al. Dynamic kinetic resolution of 2-phenylpropanal derivatives to yield b-chiral primary amines via bioamination. Advanced Synthesis & Catalysis. 2014. Vol. 356, N 10. P. 2257-2265.
    https://doi.org/10.1002/adsc.201400217

     

    277. Deasy R.E., Brossat M., Moody T.S., Maguire A.R. Lipase catalysed kinetic resolutions of 3-aryl alkanoic acids. Tetrahedron Asymmetry. 2011. Vol. 22, N 1. P. 47-61.
    https://doi.org/10.1016/j.tetasy.2010.12.019

     

    278. Kolodiazhnyi O.I., Kolodiazhna A.O., Faiziiev O., Gurova Y. Enzymatic deracemization of fluorinated arylcarboxylic acids: chiral enzymatic analysis and absolute stereochemistry using chiral HPLC. Symmetry. 2024. Vol. 16, N 9. P. 1150.
    https://doi.org/10.3390/sym16091150

     

    279. Feng D., Wang R., Sun X., Liu L., Liu P., Tang J., Zhang C., Liu H. Heavy metal stress in plants: Ways to alleviate with exogenous substances. Science of The Total Environment. 2023. Vol. 897, №. P. 165397.
    https://doi.org/10.1016/j.scitotenv.2023.165397

     

    280. Deckers M., Van Braeckel J., Vanneste K., Deforce D., Fraiture M.-A., Roosens N. h. c. Food Enzyme Database (FEDA): a web application gathering information about food enzyme preparations available on the European market. Database. 2021. Vol. 2021.
    https://doi.org/10.1093/database/baab060

     

    281. Li X., Zhang L., Ren H., Wang X., Mi F. Zinc toxicity response in Ceratoides arborescens and identification of CaMTP, a novel zinc transporter. Frontiers in Plant Science. 2022. Vol. 13.
    https://doi.org/10.3389/fpls.2022.976311

     

    282. Zhang Y., Liao H. Epibrassinolide improves the growth performance of Sedum lineare upon Zn stress through boosting antioxidative capacities. PLOS ONE. 2021. Vol. 16, N 9. P. e0257172.
    https://doi.org/10.1371/journal.pone.0257172

     

    283. Li Q., Guan C., Zhao Y., Duan X., Yang Z., Zhu J. Salicylic acid alleviates Zn-induced inhibition of growth via enhancing antioxidant system and glutathione metabolism in alfalfa. Ecotoxicology and Environmental Safety. 2023. Vol. 265. P. 115500.
    https://doi.org/10.1016/j.ecoenv.2023.115500

     

    284. Zhou M., Ghnaya T., Dailly H., Cui G., Vanpee B., Han R., Lutts S. The cytokinin trans-zeatine riboside increased resistance to heavy metals in the halophyte plant species Kosteletzkya pentacarpos in the absence but not in the presence of NaCl. Chemosphere. 2019. Vol. 233. P. 954-965.
    https://doi.org/10.1016/j.chemosphere.2019.06.023

     

    285. Pavlíková D., Pavlík M., Procházková D., Zemanová V., Hnilička F., Wilhelmová N. Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. Journal of Plant Physiology. 2014. Vol. 171, N 7. P. 559-564.
    https://doi.org/10.1016/j.jplph.2013.11.016

     

    286. Mathpal B., Srivastava P.C., Pachauri S.P., Shukla A.K., Shankhdhar S.C. Role of gibberellic acid and cytokinin in improving grain Zn Accumulation and yields of rice (Oryza sativa L.). Journal of Soil Science and Plant Nutrition. 2023. Vol. 23, N 4. P. 6006-6016.
    https://doi.org/10.1007/s42729-023-01459-1

     

    287. Maleva M., Borisova G., Chukina N., Prasad M.N.V. Urea-induced oxidative damage in Elodea densa leaves. Environmental Science and Pollution Research. 2015. Vol. 22, N 17. P. 13556-13563.
    https://doi.org/10.1007/s11356-015-4600-x

     

    288. Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochemical Journal. 1973. Vol. 134, N 3. P. 707-716.
    https://doi.org/10.1042/bj1340707

     

    289. Kumar G.N.M., Knowles N.R. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiology. 1993. Vol. 102, N 1. P. 115-124.
    https://doi.org/10.1104/pp.102.1.115

     

    290. Mohammadi M., Aelaei M., Saidi M. Pre-harvest spray of GABA and spermine delays postharvest senescence and alleviates chilling injury of gerbera cut flowers during cold storage. Scientific Reports. 2021. Vol. 11, N 1. P. 14166.
    https://doi.org/10.1038/s41598-021-93377-4

     

    291. Wu W., Zhang Q., Ervin E.H., Yang Z., Zhang X. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science. 2017. Vol. 8. P. 1017.
    https://doi.org/10.3389/fpls.2017.01017

     

    292. De Coen L.M., Roman B.I., Movsisyan M., Heugebaert T.S.A., Stevens C.V. Synthesis and biological activity of oxazolopyrimidines. European Journal of Organic Chemistry. 2018. Vol. 19. P. 2148-2166.
    https://doi.org/10.1002/ejoc.201800133

     

    293. Karatas E., Foto E., Ertan-Bolelli T., Yalcin-Ozkat G., Yilmaz S., Ataei S., Zilifdar F., Yildiz I. Discovery of 5-(or 6)-benzoxazoles and oxazolo[4,5-b]pyridines as novel candidate antitumor agents targeting hTopo IIalpha. Bioorganic Chemistry. 2021. Vol. 112. P. 104913.
    https://doi.org/10.1016/j.bioorg.2021.104913

     

    294. Zhao C., Liu Y., Cui Z. Recent development of azole-sulfonamide hybrids with the anticancer potential. Future Medicinal Chemistry. 2024. Vol. 16, N 12. P. 1267-1281.
    https://doi.org/10.1080/17568919.2024.2351291

     

    295. Souza J.M.T., Silva S.A.N.M., Rocha R.B.D., Machado F.D.S., Marinho Filho J.D.B., Araújo A.J. Uncovering the potential of chalcone-sulfonamide hybrids: a systematic review on their anticancer activity and mechanisms of action. Cell Biochemistry & Function. 2024. Vol. 42, N 7. P. e70001.
    https://doi.org/10.1002/cbf.70001

     

    296. Poliudov A.O., Havryshko D.Y., Sorokin M.D., Yatsymyrskyi A.V., Virych P.A., Shishkina S.V., Fokin A.A., Omelian Т.V., Kysil A.I., Milokhov D.S., Dobrydnev A.V. Synthesis, tautomerism, and anticancer activity of 5,5-disubstituted 1,2-oxathiolan-4-one 2,2-dioxides. Journal of Molecular Structure. 2025. Vol. 1325. P. 140952.
    https://doi.org/10.1016/j.molstruc.2024.140952

     

    297. Sochacka-Ćwikła A., Mączyński M., Oxazolo[5,4-d]pyrimidines as anticancer agents: a comprehensive review of the literature focusing on SAR analysis. Molecules. 2025. Vol. 30, N 3. P. 666.
    https://doi.org/10.3390/molecules30030666

     

    298. Sviripa V.M., Gakh A.A., Brovarets V.S., Gutov A.V., Drach B.S. Original approach to new derivatives of [1,3]oxazolo[4,5-d]pyrimidine. Synthesis. 2006. Vol. 20. P. 3462-3466.
    https://doi.org/10.1055/s-2006-950221

     

    299. Boyd M.R., Paull K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Development Research. 1995. Vol. 34. P. 91-109.
    https://doi.org/10.1002/ddr.430340203

     

    300. Monks A., Scudiero D., Skehan P., Shoemaker R., Paull K., Vistica D., Hose C., Jangley J., Cronisie P., Viagro-Wolff A., Gray-Goodrich M., Campell H., Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute. 1991. Vol. 83. P. 757-766.
    https://doi.org/10.1093/jnci/83.11.757

     

    301. Acton E.M., Narayanan V.L., Risbood P.A., Shoemaker R.H., Vistica D.T., Boyd M.R. Anticancer specificity of some ellipticinium salts against human brain tumors in vitro. Journal of Medicinal Chemistry. 1994. Vol. 37. P. 2185-2189.
    https://doi.org/10.1021/jm00040a010

     

    302. Grave N., Scheffel T.B., Cruz F.F., Rockenbach L., Goettert M.I., Laufer S., Morrone F.B. The functional role of p38 MAPK pathway in malignant brain tumors. Frontiers in Pharmacology. 2022. Vol. 13. P. 975197.
    https://doi.org/10.3389/fphar.2022.975197

     

    303. Haapasalo J., Nordfors K., Haapasalo H., Parkkila S. The expression of carbonic anhydrases II, IX and XII in brain tumors. Cancers. 2020. Vol. 12. P. 1723.
    https://doi.org/10.3390/cancers12071723

     

    304. Li X., Chen Y., Tao Y., Shen L., Xu Z., Bian Z., Li H. Challenges of photocatalysis and their coping strategies. Chem Catalysis. 2022. Vol. 2, N 6. P. 1315-1345.
    https://doi.org/10.1016/j.checat.2022.04.007

     

    305. Kumari H., Suman S., Ranga R., Chahal R., Devi S., Sharma S., Kumar S., Kumar P., Kumar A., Parmar R. A review on photocatalysis used for wastewater treatment: dye degradation. Water, Air, & Soil Pollution. 2023. Vol. 234. P. 349.
    https://doi.org/10.1007/s11270-023-06359-9

     

    306. Patrylak L.K., Yakovenko A.V., Nizhnik B.O., Pertko O.P., Melnychuk O.V. Antibacterial properties of silver nanoparticles deposited on different carriers. Springer Proceedings in Physics. 2024. Vol. 312. Springer. Р. 279-289.
    https://doi.org/10.1007/978-3-031-67527-0_20

     

    307. Patrylak L., Nizhnik B., Yakovenko A., Melnychuk O., Pertko O. Preparation of Ag-containing natural zeolites with improved porous characteristics as sorbents for water purification. Water and water purification technologies. 2022. Vol. 33. P. 25.
    https://doi.org/10.20535/2218-930022022261030

     

    308. Dapson R.W. Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining. Biotechnic & Histochemistry. 2018. Vol. 93, N 8. P. 543-556.
    https://doi.org/10.1080/10520295.2018.1528385

     

    309. Hutsul K., Ivanenko I., Patrylak L., Pertko O., Kamenskyh D. ZnO/Zeolite composite photocatalyst for dyes degradation. Applied Nanoscience. 2023. Vol. 13. P. 7601-7609.
    https://doi.org/10.1007/s13204-023-02950-y

     

    310. Olusegun S.J., Mohallem N.D.S. Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles. Environmental Pollution. 2020. Vol. 260. P. 114019.
    https://doi.org/10.1016/j.envpol.2020.114019

     

    311. Detlefsen W.D. Chapter 20 – Phenolic resins: some chemistry, technology, and history. Dillard D.A., Pocius A.V., Chaudhury M. (Eds.). Adhesion Science and Engineering. Elsevier Science B.V., 2002. P. 869-945.
    https://doi.org/10.1016/B978-044451140-9/50020-2

     

    312. Asimakopoulos I.A., Psarras G.C., Zoumpoulakis L. Nanocomposites of barium titanate nanoparticles embedded in thermosetting polymer matrices (novolak resin/unsaturated polyesters/epoxy resin): a comparative study. ChemEngineering. 2019. Vol. 3, N 12. P. 1-20.
    https://doi.org/10.3390/chemengineering3010012

     

    313. Hossain U.H., Seidl T., Ensinger W. Combined in situ infrared and mass spectrometric analysis of high-energy heavy ion induced degradation of polyvinyl polymers. Polymer Chemistry. 2014. Vol. 5. Р. 1001.
    https://doi.org/10.1039/C3PY01062G

     

    314. Zhang W., Jiang N., Zhang. T., Li T. Thermal stability and thermal degradation study of phenolic resin modified by cardanol. Emerging Materials Research. 2020. Vol. 9. P. 180-185.
    https://doi.org/10.1680/jemmr.18.00133

     

    315. Lewandowski K., Skórczewska K. A brief review of poly(vinyl chloride) (PVC) recycling. Polymers. 2022. Vol. 14. Р. 3035.
    https://doi.org/10.3390/polym14153035

     

    316. Bandeira R.M., van Drunen J., Tremiliosi-Filho G., dos Santos Júnior J.R., de Matos J.M.E. Polyaniline/polyvinyl chloride blended coatings for the corrosion protection of carbon steel. Progress in Organic Coatings. 2017. Vol. 106. Р. 50-59.
    https://doi.org/10.1016/j.porgcoat.2017.02.009

     

    317. Combariza C., de Oca-Vásquez D.M., Batista-Menezes D., Corrales-Ureña Y., Acelas M., Bautista M., Lasprilla-Botero J. Enhancing of the antimicrobial activity of a vinyl-coated fabric product by using a dual multilayered organic-inorganic additive system. Advances in Materials Science and Engineering. 2024. Article ID 8847271, 12 p.
    https://doi.org/10.1155/2024/8847271

     

    318. Ali M.I., Ahmed S., Robson G., Javed I., Ali N., Atiq N., Hameed A. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. Journal of Basic Microbiology. 2014. Vol. 54. Р. 18-27.
    https://doi.org/10.1002/jobm.201200496

     

    319. Wang T., Dai S., Xiong Y., Yan H., Zhu Y. The morpholine surfactants with corrosion inhibition and antibacterial activity: experiments ant theoretical calculations. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024. Vol. 700, N 5. Р. 134784.
    https://doi.org/10.1016/j.colsurfa.2024.134784

     

    320. Hodyna D., Kovalishyn V., Shulha Y., Trokhimenko O., Aksenovska O., Rogalsky S., Metelytsia L. Antifungal activity and cytotoxicity of imidazole- and morpholine-based lysosomotropic detergents. Innovative Biosystems and Bioengineering. 2025. Vol. 9, N 1. Р. 24-46.
    https://doi.org/10.20535/ibb.2025.9.1.315523

     

    321. Wang D., Wang Y., Wan H., Wang J., Wang L. Synthesis of gemini basic ionic liquids and their application in anion exchange membranes. RSC Advances. 2018. Vol. 8. Р. 10185.
    https://doi.org/10.1039/C8RA00594J

     

    322. Rogalsky S., Tarasyuk O., Vashchuk A., Davydenko V., Dzhuzha O., Motrunich S., Cherniavska T., Papeikin O., Bodachivska L., Bardeau J.-F. Synthesis and evaluation of N,N-dibutylundecenamide as new eco-friendly plasticizer for polyvinyl chloride. Journal of Materials Science. 2022. Vol. 57. Р. 6102-6114.
    https://doi.org/10.1007/s10853-022-07006-0

     

    323. Nilouyal S., Isfahani A.P., Karahan H.E., Muchtar A., Joko I., Al-Aziz H., Qin D., Ito M.M., Sivaniah E., Ghalei B.. Exploring the potential of fluorinated polyurethane membranes in hydrocarbon separation. Materials Letters. 2024. Vol. 357. Р. 135653.
    https://doi.org/10.1016/j.matlet.2023.135653

     

    324. Wu A.X., Drayton J.A., Rodriguez K.M., Qian Q., Lin S., Smith Z.P. Influence of aliphatic and aromatic fluorine groups on gas permeability and morphology of fluorinated polyimide films. Macromolecules. 2020. Vol. 53, N 13. P. 5085-5095.
    https://doi.org/10.1021/acs.macromol.0c01024

     

    325. Tkachenko I.M., Shekera O.V., Shevchenko V.V. Allyl-containing polyaryl ethers with perfluorinated mono- and biphenylene fragments. Polymer Science, Series B. 2013. Vol. 55, N 5-6. P. 336-343.
    https://doi.org/10.1134/S1560090413060080

     

    326. Lipatov Yu.S., Feinerman A.E. Surface tension and surface free energy of polymers. Advances in Colloid and Interface Science. 1979. Vol. 11, N 3. Р. 125-234.
    https://doi.org/10.1016/0001-8686(79)80007-X

     

    327. Lipatova T.E., Lipatov Yu.S. Biocompatible polymers for medical application. Macromolecular Symposia. 2000. Vol. 152. P. 139-150.
    https://doi.org/10.1002/1521-3900(200003)152:1<139::AID-MASY139>3.0.CO;2-V

     

    328. Ossowicz-Rupniewska P., Bednarczyk P., Nowak M., Nowak A., Duchnik W., Kucharski Ł., Rokicka J., Klimowicz A., Czech Z. Sustainable UV-crosslinkable acrylic pressure-sensitive adhesives for medical application. International Journal of Molecular Sciences. 2021. Vol. 22. P. 11840.
    https://doi.org/10.3390/ijms222111840

     

    329. Özlem-Gundogdu S., Gurel E.A., Hacaloglu J. Pyrolysis of poly(methy methacrylate) copolymers. Journal of Analytical and Applied Pyrolysis. 2015. Vol. 113. P. 529-538.
    https://doi.org/10.1016/j.jaap.2015.03.015

     

    330. Бабіна Ю.М., Назарчук О.А., Дмитрієв Д.В., Римша О.В., Бегма М.А. Дослідження чутливості клінічних штамів s. Aureus до антисептика декаметоксину та місцевих анестетиків. Art of medicine. 2020. Вип. 3 (15). С. 17-22.
    https://doi.org/10.21802/artm.2020.3.15.17.

     

    331. Liebscher J. Chemistry of Polydopamine – Scope, Variation, and Limitation. European Journal of Organic Chemistry. 2019. P. 4976-4994.
    https://doi.org/10.1002/ejoc.201900445

     

    332. Liebscher J., Mrowczynski R., Scheidt H.A., Filip C., Hadade N.D., Turcu R., Bende A., Beck S. Structure of polydopamine: a never-ending story? Langmuir. 2013. Vol. 29. P. 10539-10548.
    https://doi.org/10.1021/la4020288

     

    333. Chen R., Lin B., Luo R. Recent progress in polydopamine-based composites for the adsorption and degradation of industrial wastewater treatment. Heliyon. 2022. Vol. 8. e12105.
    https://doi.org/10.1016/j.heliyon.2022.e12105

     

    334. Bliznyuk V.N., Kołaci’nska K., Pud A.A., Ogurtsov N.A., Noskov Yu.V., Powell B.A., DeVol T.A. High effectiveness of pure polydopamine in extraction of uranium and plutonium from groundwater and seawater. RSC Advances. 2019. Vol. 9. P. 30052-30063.
    https://doi.org/10.1039/C9RA06392G

     

    335. Ball V., Del Frari D., Michel M., Buehler M.J., Toniazzo V., Singh M.K., Gracio J., Ruch D. Deposition mechanism and properties of thin polydopamine films for high added value applications in surface science at the nanoscale. BioNanoSci. 2012. Vol. 2. P. 16-34.
    https://doi.org/10.1007/s12668-011-0032-3

     

    336. Duhan M., Kaur R. Phytic acid doped polyaniline nanofibers: an advanced adsorbent for methylene blue dye. Environmental Nanotechnology, Monitoring & Management. 2019. Vol. 12. P. 100248.
    https://doi.org/10.1016/j.enmm.2019.100248

     

    337. Pang Y., Shi Y., Pan Y., Yang Y., Long Y., Zheng H. Facile and sensitive detection of dopamine based on in situ formation of fluorescent polydopamine nanoparticles catalyzed byperoxidase-like ficin. Sensors and Actuators B. 2018. Vol. 263. P. 177-182.
    https://doi.org/10.1016/j.snb.2018.02.128

     

    338. Yaqoob H., Ali H.M., Khalid U. Pyrolysis of waste plastics for alternative fuel: a review of key factors. RSC Sustainability. 2025. Vol. 3. Р. 208-218.
    https://doi.org/10.1039/D4SU00504J

     

    339. Pyshyev S., Lypko Y., Demchuk Y., Kukhar O., Korchak B., Pochapska I., Zhytnetskyi I. Characteristics and applications of waste tire pyrolysis products: A review. Сhemistry & Chemical Technology. 2024. Vol. 8, № 2. P. 244-257.
    https://doi.org/10.23939/chcht18.02.244

     

    340. Гринишин К.О., Скорохода В.Й., Червінський Т.І. Поліетиленові відходи – сировина для одержання компонентів моторних палив. Chemistry, Technology and Application of Substances. 2023. Vol. 6, № 2. C. 55-60.
    https://doi.org/10.23939/ctas2023.02.055

     

    341. Kondakova O., Boichenko S. Environmentally clean reformulated aviation gasoline. In: Karakoç T., Colpan C., Şöhret Y. (eds) Advances in Sustainable Aviation. Springer, Cham. 2018. Р. 3-14.
    https://doi.org/10.1007/978-3-319-67134-5_1

     

    342. Wang Y., Liang R., Lin J., Chen J., Zhang Q., Li J., Wang M., Hui X., Tan H., Fu Q. Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury. Journal of Materials Chemistry. B. 2021. Vol. 9, N 38. P. 7979-7990.
    https://doi.org/10.1039/D1TB01236C

     

    343. Davis F.J., Mitchell G.R. Polyurethane based materials with applications in medical devices In: Bártolo P., Bidanda B. (eds) Bio-materials and prototyping applications in medicine. Springer, Boston, MA, 2008. P. 27-48.
    https://doi.org/10.1007/978-0-387-47683-4_3

     

    344. Galatenko N.A., Kulyesh D.V., Maletskyi A.P., Karpenko O.S. Soft-tissue response to synthetic polymer implants made of crosslinked polyurethane and containing a biologically active substance, albucid or dacarbazine, in animals. Journal of Ophthalmology. 2018. № 6. Р. 52-48.
    https://doi.org/10.31288/oftalmolzh201865258

     

    345. Назарчук О.А., Дениско Т.В. Оцінка антимікробної активності біоматеріалів на основі альгінату та декаметоксину щодо Staphylococcus aureus та Escherichia coli. ScienceRise: Biological Science. 2023. Т. 37, № 4. С. 11-18.
    https://doi.org/10.15587/2519-8025.2023.298594

     

    346. Borah B., Banerjee S., Allam B.K. Recent advances in the catalytic applications of tin dioxide-based materials in the synthesis of bioactive heterocyclic compounds. Tetrahedron Green Chem. 2024. Vol. 4. P. 100048.
    https://doi.org/10.1016/j.tgchem.2024.100048

     

    347. Busca G. The surface acidity and basicity of solid oxides and zeolites. Metal Oxides. 2005. P. 247-318.
    https://doi.org/10.1201/9781420028126.ch9

     

    348. Sauer J. Molecular models in ab initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysts. Chemical Reviews. 1989. Vol. 89, N 1. P. 199-255.
    https://doi.org/10.1021/cr00091a006

     

    349. Barca G., Bertoni C., Carrington L., et al. Recent developments in the general atomic and molecular electronic structure system. Journal of Chemical Physics. 2020. Vol. 152, N 15. P. 154102.
    https://doi.org/10.1063/5.0005188

     

    350. Stevens W.J., Krauss M., Basch H., Jasien P.G. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Canadian Journal of Chemistry. 1992. Vol. 70, N 2. P. 612.
    https://doi.org/10.1139/v92-085

     

    351. Cruz-Huerta J., Carillo-Morales M., Santacruz-Juárez E., Hernández-Ahuactzi I.F., Escalante-García J., Godoy-Alcantar C., Sánchez M. Macrocyclic diorganotin complexes of γ-amino acid dithiocarbamates as hosts for ion-pair recognition. Inorganic Chemistry. 2008. Vol. 47, N 21. P. 9874-9885.
    https://doi.org/10.1021/ic8007987

     

    352. Filonenko O.V., Grebenyuk A.G., Terebinska M.I., Lobanov V.V. Quantum chemical simulation of acid-base properties of the surface of SnO2 nanoparticles. Chemistry, Physics and Technology of Surface. 2023. Vol. 14, N 4. P. 495-503.
    https://doi.org/10.15407/hftp14.04.495

     

    353. Pavelko R.G., Daly H., Hardacre C., Vasilieva A.A., Llobeta E. Interaction of water, hydrogen and their mixtures with SnO2 based materials: the role of surface hydroxyl groups in detection mechanisms. Physical Chemistry Chemical Physics. 2010. Vol. 12. P. 2639.
    https://doi.org/10.1039/b921665k

     

    354. Zheleznyi L., Pop G., Papeykin O., Venger I., Bodachivska L. Development of compositions of urea thickening agent greases on aminoamides of fatty acids. Eastern-European Journal of Enterprise Technologies. 2017. № 3/6(87). Р. 9-15.
    https://doi.org/10.15587/1729-4061.2017.99580

     

    355. Prymushko S.O., Galatenko N.A., Rozhnova R.A., Kozlova G.A., Gladyr I.I., Danko N.O. Synthesis and research of polyurethane urea with 2-(2-aminoethoxy)ethan-1-amine and 3-{2-[2-(3-aminopropoxy)ethoxy]ethoxy}-propane-1-amine as macrochain extenders, and compositions with ifosphamide based on them. Voprosy khimii i khimicheskoi tekhnologii. 2024. N 1. P. 70-80.
    https://doi.org/10.32434/0321-4095-2024-152-1-70-80

     

    356. Prymushko S.O., Galatenko N.A., Rozhnova R.A., Kozlova G.A., Gladyr I.I., Nechaeva L.Yu. Film-forming compositions based on polyurethane ureas with extended release of dacarbazine. Полімерний журнал. 2023. Vol. 45, N 4. P. 319-328.
    https://doi.org/10.15407/polymerj.45.04.319

     

    357. Kitamaki R., Shirai K., Sugino K. Preparation and properties of polyhexamethyleneguanidine. Bulletin of the Chemical Society of Japan. 1968. Vol. 41. P. 1461-1463.
    https://doi.org/10.1246/bcsj.41.1461

     

    358. Kim H.-R., Hwang G.-W., Naganuma A. Adverse health effects of humidifier disinfectants in Korea: lung toxicity of polyhexamethylene guanidine phosphate. The Journal of Toxicological Sciences. 2016. Vol. 41, N 6. P. 711-717.
    https://doi.org/10.2131/jts.41.711

     

    359. Gerba C. Quaternary ammonium biocides: efficacy in application. Applied and Environmental Microbiology. 2015. Vol. 81, N 2. P. 363-469.
    https://doi.org/10.1128/AEM.02633-14

     

    360. Xue Y., Xiao H., Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. International Journal of Molecular Sciences. 2015. Vol. 16. P. 3626-3655.
    https://doi.org/10.3390/ijms16023626

     

    361. Vortman M.Ya., Pysmenna Yu.B., Chuenko A.I., Abdulina D.R., Kopteva Zh.P., Kopteva A.E., Rudenko A.V., Tretyak V.V., Lemeshko V.N., Shevchenko V.V. Fungicidal and bactericidal activity of the alkyl-substituted guanidine-containing oligomers. Microbiological Journal. 2020. Vol. 82, N 6. P. 54-63.
    https://doi.org/10.15407/microbiolj82.06.054

     

    362. Fraenkel-Conrat H., Olcott H.S. Reaction of formaldehyde with proteins; participation of the guanidyl groups and evidence of crosslinking. Journal of the American Chemical Society. 1946. N 68. P. 34-37.
    https://doi.org/10.1021/ja01205a011

     

    363. Baniamerian H., Høj M., Beier M.J., Jensen A.D. Catalytic conversion of sugars and polysaccharides to glycols: A review. Applied Catalysis B: Environmental. 2023. Vol. 330. Р. 122650.
    https://doi.org/10.1016/j.apcatb.2023.122650

     

    364. Scheirs J., Long T.E. Modern polyesters: chemistry and technology of polyesters and copolyesters. Chichester: John Wiley & Sons Ltd, 2003. 750 p.
    https://doi.org/10.1002/0470090685

     

    365. van Faassen M. Time-dependent current-density-functional theory for molecules. International Journal of Modern Physics B. 2006. Vol. 20, N 24. Р. 3419-3463.
    https://doi.org/10.1142/S0217979206035679

     

    366. Ferrer N., Filatov M., Huix-Rotllant M. Density-functional methods for excited states. Springer International Publishing Switzerland. 2016, 481 р.
    https://doi.org/10.1007/978-3-319-22081-9

     

    367. Cammi R., Cappelli C., Mennucci B., Tomasi J. Properties of excited states of molecules in solution described with continuum solvation models. In: Leszczynski J., Shukla M. (eds) Practical aspects of computational chemistry. Springer, Dordrecht. 2009. P. 19-36.
    https://doi.org/10.1007/978-90-481-2687-3_2

     

    368. Improta R., Barone V., Scalman G., Frisch M.J. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. Journal of Chemical Physics. 2006. Vol. 125. Р. 054103.
    https://doi.org/10.1063/1.2222364

     

    369. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B. 2009. Vol. 13. Р. 6378-6396.
    https://doi.org/10.1021/jp810292n

     

    370. Marenich A.V., Cramer C.J., Truhlar D.G. Sorting out the relative contributions of electrostatic polarization, dispersion, and hydrogen bonding to solvatochromic shifts on vertical electronic excitation energies. Journal of Chemical Theory and Computation. 2010. Vol. 6. Р. 2829-2844.
    https://doi.org/10.1021/ct100267s

     

    371. Kumar P.S.V., Raghavendra V., Subramanian V. Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. Journal of Chemical Sciences. 2016. Vol. 128, N 10. Р. 1527-1536.
    https://doi.org/10.1007/s12039-016-1172-3

     

    372. Kausar A., Iqbal M., Javed A., Aftab K., Nazli Z., Bhatti H.N., Nouren S. Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids. 2018. Vol. 256. P. 395-407.
    https://doi.org/10.1016/j.molliq.2018.02.034

     

    373. Chen D., Chen J., Luan X., Ji H., Xia Z. Characterization of anion-cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chemical Engineering Journal. 2011. Vol. 171, N 3. P. 1150-1158.
    https://doi.org/10.1016/j.cej.2011.05.013

     

    374. Zhang Y., Ji J., Sun S. Application of sodium dodecyl sulfate and cetyltrimethylammonium bromide-modified activated carbon for removal of PAHs from peanut oil. Food Control. 2023. P. 109605.
    https://doi.org/10.1016/j.foodcont.2023.109605

     

    375. Sabzehmeidani M.M., Mahnaee S., Ghaedi M., Heidari H., Roy V.A.L. Carbon based materials: a review of adsorbents for inorganic and organic compounds. Materials Advances. 2021. Vol. 2. P. 598-627.
    https://doi.org/10.1039/D0MA00087F

     

    376. Wang S., Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal. 2010. Vol. 156, N 1. P. 11-24.
    https://doi.org/10.1016/j.cej.2009.10.029

     

    377. Armagan B., Turan M., Karadag D. Adsorption of different reactive dyes onto surfactant-modified zeolite: Kinetic and equilibrium modeling. Survival and Sustainability. Berlin, Heidelberg, 2010. P. 1237-1254.
    https://doi.org/10.1007/978-3-540-95991-5_116

     

    378. Pukcothanung Y., Siritanon T., Rangsriwatananon K. The efficiency of zeolite Y and surfactant-modified zeolite Y for removal of 2,4-dichloro-phenoxyacetic acid and 1,1′-dimethyl-4,4′-bipyridinium ion. Microporous and Mesoporous Materials. 2018. Vol. 258. P. 131-140.
    https://doi.org/10.1016/j.micromeso.2017.08.035

     

    379. Straioto H., Viotti P.V., Moura A.A. de Diório A., Scaliante M.H.N.O., Moreira W.M., Vieira M.F., Bergamasco R. Modification of natural zeolite clinoptilolite and its application in the adsorption of herbicides. Environmental Technology. 2022. P. 1-43.
    https://doi.org/10.1080/09593330.2022.2077134

     

    380. Harutyunyan L.R., Tangamyan L.S., Manukyan A.V., Harutyunyan R.S. Characterization of both anionic and cationic surfactant-modified natural zeolite and its application for removal of metal-ions from aqueous medium. Voprosy Khimii i Khimicheskoi Tekhnologii. 2023. N 2. P. 31-40.
    https://doi.org/10.32434/0321-4095-2023-147-2-31-40

     

    381. Hervieu A., Re’be’ C., Ve’gran F., Chalmin F., Bruchard M., Vabres P., Apetoh L., Ghiringhelli F., Mignot G. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth. Journal of Investigative Dermatology. 2013. Vol. 133, N 2. Р. 499-508.
    https://doi.org/10.1038/jid.2012.273

     

    382. Vislohuzova T., Rozhnova R., Kiselova T., Kozlova G., Nechaeva L., Galatenko N. Hydrophilic polyacrylamide gels modified with poly-N-vinylpyrrolidone. American Journal of Polymer Science and Technology. 2024. Vol. 10, N 4. Р. 90-96.
    https://doi.org/10.11648/j.ajpst.20241004.12

     

    383. Brzeska J.A., Piotrowska-Kirschling A. A brief introduction to the polyurethanes according to the principles of green chemistry. Processes. 2021. Vol. 9. P. 1929-1952.
    https://doi.org/10.3390/pr9111929

     

    384. Liang H., Feng Y., Lu J., Liu L., Yang Zh., Luo Y., Zhang Y., Zhang Ch. Bio-based cationic waterborne polyurethanes dispersions prepared from different vegetable oils. Industrial Crops and Products. 2018. Vol. 122. P. 448-455.
    https://doi.org/10.1016/j.indcrop.2018.06.006

     

    385. Paraskar P.M., Kulkarni R.D. Synthesis of isostearic acid/dimer fatty acid-based polyesteramide polyol for the development of green polyurethane coatings. Journal of Polymers and the Environment. 2020. Vol. 29. P. 54-70.
    https://doi.org/10.1007/s10924-020-01849-x

     

    386. Kovács E., Turczel G., Szabó L., Varga R., Tóth I., Anastas P.T., Tuba R. Synthesis of 1,6-hexanediol, polyurethane monomer derivatives via isomerization metathesis of methyl linolenate. ACS Sustainable Chemistry & Engineering. 2017. Vol. 5. P. 11215-11220.
    https://doi.org/10.1021/acssuschemeng.7b03309

     

    387. Cheng Zh., Li Q., Yan Zh., Liao G., Zhang B., Yu Y., Yi Ch., Xu Z. Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties. Progress in Organic Coatings. 2019. Vol. 127. P. 194-201.
    https://doi.org/10.1016/j.porgcoat.2018.11.020

     

    388. Biermann U., Silvestre A.J.D. Plastics from renewable sources as green and sustainable alternatives. Current Opinion in Green and Sustainable Chemistry. 2022. Vol. 33. P. 100557-100568.
    https://doi.org/10.1016/j.cogsc.2021.100557

     

    389. Paraskar P.M., Prabhudesai M.S., Hatkar V.M., Kulkarni R.D. Vegetable oil based polyurethane coatings – A sustainable approach: A review. Progress in Organic Coatings. 2021. Vol. 156. P. 106267-106285.
    https://doi.org/10.1016/j.porgcoat.2021.106267

     

    390. Biermann U., Bornscheuer U.T., Feussner I., Meier M.A.R., Metzger J.O. Fatty acids and their derivatives as renewable platform molecules for the chemical industry. Angewandte Chemie International Edition. 2021. Vol. 60. P. 20144-20165.
    https://doi.org/10.1002/anie.202100778

     

    391. Tennebroek R., van der Hoeven-van Casteren I., Swaans R., van der Slot S., Stals P.J.M., Tuijtelaars B., Koning C. Water-based polyurethane dispersions. Polymer International. 2019. Vol. 68. P. 832-842.
    https://doi.org/10.1002/pi.5627

     

    392. Canilang H.M.O., Caliwag A.C., Lim W. Novel battery management systems: Enhancing flexibility and fault tolerance. Journal of Energy Storage. 2025. Vol. 107. P. 114898.
    https://doi.org/10.1016/j.est.2024.114898

     

    393. Eblagon K.M., Figueiredo J.L., Pereira M.F.R. Catalytic valorization of industrial grade sugarcane molasses to 5-hydroxymethylfurfural in water. Catalysis Today. 2024. Vol. 441. P. 114898.
    https://doi.org/10.1016/j.cattod.2024.114898

     

    394. Gong R., Ma Z., Wang X., Han Y., Guo Y., Sun G., Li Y., Zhou J. Sulfonic-acid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose. RSC Advances. 2019. Vol. 9, N 50. P. 28902-28907.
    https://doi.org/10.1039/C9RA04568F

     

    395. Jakob A., Likozar B., Grilc M. Aqueous conversion of monosaccharides to furans: Were we wrong all along to use catalysts? Green Chemistry. 2022. Vol. 24. P. 8523-8537.
    https://doi.org/10.1039/D2GC02736D

     

    396. Sairanen E., Karinen R., Lehtonen J. Comparison of solid acid-catalyzed and autocatalyzed C5 and C6 sugar dehydration reactions with water as a solvent. Catalysis Letters. 2014. Vol. 144, N 11. P. 1839-1850.
    https://doi.org/10.1007/s10562-014-1350-1

     

    397. Vidil T., Tournilhac F., Musso S., Robisson A., Leiblera L. Control of reactions and network structures of epoxy thermosets. Progress in Polymer Science. 2016. Vol. 62. P. 126-179.
    https://doi.org/10.1016/j.progpolymsci.2016.06.003

     

    398. Białkowska A., Bakar M., Kucharczyk W., Zarzyka I. Hybrid epoxy nanocomposites: improvement in mechanical properties and toughening mechanisms – A review. Polymer. 2023. Vol. 15, N 6. P. 1398-1410.
    https://doi.org/10.3390/polym15061398

     

    399. Klose L., Meyer-Heydecke N., Wongwattanarat S., Chow J., García P.P., Carré C., Streit W., Antranikian G., Romero A.M., Liese A. Towards sustainable recycling of epoxy-based polymers: Approaches and challenges of epoxy biodegradation. Polymers. 2023. Vol. 15, N 12. P. 2563-2584.
    https://doi.org/10.3390/polym15122653

     

    400. Xie Y., Du X., Tian Q., Dong Y., Zhou Q. Investigation of hydroxyl-terminated polydimethylsiloxane-modified epoxy resin. Materials Chemistry and Physics. 2024. Vol. 313. Р. 128822.
    https://doi.org/10.1016/j.matchemphys.2023.128822

     

    401. Eduok U., Faye O., Szpunar J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Progress in Organic Coatings. 2017. Vol. 111. P. 124-163.
    https://doi.org/10.1016/j.porgcoat.2017.05.012

     

    402. Cheng Z., Rui L., Wei L., Yao F. The preparation and properties study of polydimethylsiloxane-based coatings modified by epoxy resin. Journal of Polymer Research. 2016. Vol. 23, N 14. P. 25-35.
    https://doi.org/10.1007/s10965-015-0903-3

     

    403. Touzi H., Sakly N., Kalfat R., Sfihi H., Jaffrezic-Renault N., Rammah M.B., Zarrouk H. Grafting of anion exchanging groups on SiO2/Si structures for anion detection in waters. Sensors and Actuators B. 2003. Vol. 96. Р. 399-406.
    https://doi.org/10.1016/S0925-4005(03)00578-1

 

V.P. Kukhar Institute 
of Bioorganic Chemistry and Petrochemistry
NAS of Ukraine

Address

© 2025 IBOPC NAS of Ukraine