Laboratory of Molecular Mechanisms of Cell Metabolism Regulation

Michael Derevyanchuk

Michael Derevyanchuk

Head of Laboratory
PhD

The laboratory was established in 2024 on the basis of the Department of Molecular Mechanisms of Cell Metabolism Regulation, founded at the Institute in 2004 on the initiative of Doctor of Biological Sciences, Professor Volodymyr Stepanovych Kravets. The laboratory studies the molecular mechanisms of the organization of signaling systems in plant cells, investigates the role of lipid signaling in hormonal and stress regulation of plant metabolism, and the influence of a number of phytohormones on the regulation of the electron transport activity of plant mitochondria under stress conditions.

The main areas of scientific activity of the laboratory are the study of molecular mechanisms of regulation of cell metabolism, in particular hormonal and stress signaling. The objects of research are the model plant system Arabidopsis thaliana and a number of cultivated plants (rapeseed, barley, soybean). The laboratory conducts current research to elucidate the mechanisms of influence of brassinosteroid hormones and cytokinins on the regulation of key metabolic links - from the early processes of signal reception and the formation of signal messengers, to the determination of changes in the work of key systems of cell homeostasis - in particular, the functioning of the mitochondrial respiratory chain. Recently, the laboratory's work has focused on the study of cell adaptation mechanisms to the action of toxic metals, in particular zinc and copper. Heavy metal pollution is one of the challenges of martial law. The laboratory is conducting promising research on the role of cytokinins in increasing plant resistance to stress conditions caused by toxic metals, in particular, programming the adaptive hormonal profile of plants.

Model of brassinosteroid action on plant cell metabolism

 

AA – ascorbic acid, APX – ascorbate peroxidase, BR – brassinosteroid, CAT – catalase, CDPK – calcium-dependent protein kinase, DAG – diacylglycerol, DGK – diacylglycerol kinase, GR – glutathione reductase, GSH – reduced glutathione, GSSG – oxidized glutathione, DHAR – dehydroascorbatereductase, MAPK – mitogen-activated protein kinase, MDHA – monodehydroascorbic acid, MDHAR – monodehydroascorbatereductase, NADPH – nicotinamide adenine dinucleotide phosphate reduced, NADP+ – nicotinamide adenine dinucleotide phosphate oxidized, NADPH-Ox. – NADPH-oxidase, PA – phosphatidic acid, PC – phosphatidylcholine, PC-PLC – phosphatidylcholine-specific phospholipase C, PChol – phosphocholine, SOD – superoxide dismutase.

 

Schematic representation of the PA signaling in plants

 

Hypothetical receptors lead to activation of lipid signaling enzymes. Key examples of PA-regulated signaling events in hormonal regulation are shown (for details, see the main text); also shown here are PA-induced changes of membrane curvature and subsequent membrane transport events. Headgroups of DAG in a membrane are shown in green; headgroups of PA in crimson; and headgroups of other lipids in pink color. ABI1, ABSCISIC ACID-INSENSITIVE 1, AtArabidopsis thaliana, DAG, diacylglycerol, DGK, diacylglycerol kinase, GEF8, RopGEF8, guanine nucleotide exchange factor 8, GID, GIBBERELLIN INSENSITIVE DWARF1, NPC, non-specific phospholipase C, NPR1, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1, OsOryza sativa, PA, phosphatidic acid, PI-PLC, phosphatidylinositol-specific phospholipase C; PLD, phospholipase D, PLs, phospholipids (e.g., phosphatidylcholine, phosphatidylethanolamine), RbohD/F, respiratory burst oxidase protein D/F, RGS1, Regulator of G protein Signaling 1, ROS, reactive oxygen species, SPHK, sphingosine kinase.

 

Simplified schematic representation of main polyamine action mechanisms in plants cells

 

AGO1 – Argonaute1 protein, ATG – “Autophagy-related gene” protein, CDPK – calcium-dependent protein kinase, DGK – diacylglycerol kinase, ROS – reactive oxygen species, DAO – diamine oxidase, LHC – light harvesting complex, PAO – polyamine oxidase, PA – phosphatidic acid, PIP2 – phosphatidylinositol 4,5-bisphosphate, PIP5K – phosphatidylinositol monophosphate 5-kinase, PLD – phospholipase D, RBOH – respiratory burst oxidase homolog, SnRK2 – SNF1-related protein kinase 2, TGase – transglutaminase, TF – transcription factor, TOR – “Target Of Rapamycin” protein.

 

Schematic representation of potential fatty acid metabolism reactions during seed germination of C. tatarica under salt stress and brassinolide treatment

 

S – salt stress, BR – brassinosteroids, DAG – diacylglycerol, MAG – monoacylglycerol, TAG – triacylglycerol, FAD – fatty acid desaturase.

1. Kolesnikov Y., Kretynin S., Markhaichuk V., Filepova R., Dobrev P. I., Martinec J., Shablykin O., Schmülling T., Kravets V. The Role of Zinc in Regulation of Plant Metabolism: What is Known to Date? // Journal of Plant Growth Regulation. – 2025. – DOI: 10.1007/s00344-025-11975-2. – Квартиль: Q1.

 

2. Колесников Я., Кретинін С., Кравець В. Роль поліамінів у процесі формування стійкості рослин до дії сольового стресу та надлишку цинку у мутантів за генами фосфоліпаз D // Доповіді НАН України (Reports of the National Academy of Sciences of Ukraine). – 2025. – DOI: 10.15407/dopovidi2025.05.019.

 

3. Bukhonska Y., Derevyanchuk M., Filepova R., etc. Brassinosteroid Synthesis and Perception Differently Regulate Phytohormone Networks in Arabidopsis thaliana // International Journal of Molecular Sciences. – 2025. – Vol. 26, No. 19. – Art. 9644. – DOI: 10.3390/ijms26199644. – Квартиль: Q1

 

4. Derevyanchuk, M.; Kretynin, S.; Bukhonska, Y.; Pokotylo, I.; Khripach, V.; Ruelland, E.; Filepova, R.; Dobrev, P.I.; Martinec, J.; Kravets, V. Influence of Exogenous 24-Epicasterone on the Hormonal Status of Soybean Plants // Plants. – 2023. – Vol. 12, No. 20. – Art. 3586. – DOI: 10.3390/plants12203586. – Квартиль: Q1.

 

5. I. Pokotylo, M. Hodges, V. Kravets, E. Ruelland, Y. Blum. A ménage à trois: salicylic acid, growth inhibition, and immunity // Trends in Plant Science. – 2022. – Vol. 27, No. 5. – P. 460–471. – DOI: 10.1016/j.tplants.2021.11.008. – Квартиль: Q1.

 

6. Starodubtseva, A.; Kalachova, T.; Iakovenko, O.; Stoudková, V.; Zhabinskii, V.; Khripach, V.; Ruelland, E.; Martinec, J.; Burketová, L.; Kravets, V. BODIPY Conjugate of Epibrassinolide as a Novel Biologically Active Probe for In Vivo Imaging // International Journal of Molecular Sciences. – 2021. – Vol. 22, No. 7. – Art. 3599. – DOI: 10.3390/ijms22073599. – Квартиль: Q1.

 

7. Kretynin S. V., Kolesnikov Y. S., Derevyanchuk M. V., Kalachova T. A., Blume Y. B., Khripach V. A., Kravets V. S. Brassinosteroids application induces phosphatidic acid production and modify antioxidant enzymes activity in tobacco in calcium-dependent manner // Steroids. – (online 2019). – Art. 108444. – DOI: 10.1016/j.steroids.2019.108444. – Квартиль: Q3.

 

8. Kalachova T, Janda M, Šašek V, Ortmannová J, Nováková P, Dobrev IP, Kravets V, Guivarc'h A, Moura D, Burketová L, Valentová O, Ruelland E. Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant // Annals of Botany. – 2020. – DOI: 10.1093/aob/mcz112. – Квартиль: Q1.

 

9. I. Pokotylo, V. Kravets, E. Ruelland. Salicylic Acid Binding Proteins (SABPs): The Hidden Forefront of Salicylic Acid Signalling // International Journal of Molecular Sciences. – 2019. – Vol. 20, No. 18. – Art. 4377. – DOI: 10.3390/ijms20184377. – Квартиль: Q1.

 

10. Derevyanchuk M, Kretynin S, Kolesnikov Y, Litvinovskaya R, Martinec J, Khripach V, Kravets V. Seed germination, respiratory processes and phosphatidic acid accumulation in Arabidopsis diacylglycerol kinase knockouts – The effect of brassinosteroid, brassinazole and salinity // Steroids. – 2019. – Vol. 147. – P. 28–36. – DOI: 10.1016/j.steroids.2019.04.002. – Квартиль: Q3.

 

11. Pokotylo I., Pejchar P., Potocký M., Kocourková D., Krčková Z., Ruelland E., Kravets V., Martinec J. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants // Progress in Lipid Research. – 2018. – Vol. 71. – P. 43–53. – DOI: 10.1016/j.plipres.2018.05.003. – Квартиль: Q1.

 

12. Michael Derevyanchuk, Sergii Kretynin, Oksana Iakovenko, Raisa Litvinovskaya, Vladimir Zhabinskii, Jan Martinec, Yaroslav Blume, Vladimir Khripach, Volodymyr Kravets. Effect of 24-epibrassinolide on Brassica napus alternative respiratory pathway, guard cells movements and phospholipid signaling under salt stress // Steroids. – 2017. – Vol. 120. – P. 1–7. – DOI: 10.1016/j.steroids.2016.11.006. – Квартиль: Q3.

 

13. Derevyanchuk, M., Litvinovskaya, R., Khripach, V. et al. Brassinosteroid-induced de novo protein synthesis in Zea mays under salinity and bioinformatic approach for identification of heat shock proteins / V. S. Kravets та ін. // Plant Growth Regulation. – 2016. – DOI: 10.1007/s10725-015-0093-3. – Квартиль: Q1.

 

14. Kolesnikov YS, Kretynin SV, Volotovsky ID, Kordyum EL, Ruelland E, Kravets VS. // Molecular mechanisms of gravity perception and signal transduction in plants // Protoplasma. – 2016. – DOI: 10.1007/s00709-015-0859-5. – Квартиль: Q1.

 

15. Tetiana Kalachova, Ruben Puga-Freitas, Volodymyr Kravets, Ludivine Soubigou-Taconnat, Anne Repellin, Sandrine Balzergue, Alain Zachowski, Eric Ruelland. The inhibition of basal phosphoinositide-dependent phospholipase C activity in Arabidopsis suspension cells by abscisic or salicylic acid acts as a signalling hub accounting for an important overlap in transcriptome remodelling induced by these hormones  // Environmental and Experimental Botany. – 2016. – DOI: 10.1016/j.envexpbot.2015.11.003. – Квартиль: Q1.

 

16. Derevyanchuk, M., Litvinovskaya, R., Khripach, V. et al. Effect of 24-epibrassinolide on Arabidopsis thaliana alternative respiratory pathway under salt stress // Acta Physiologiae Plantarum. – 2015. – DOI: 10.1007/s11738-015-1967-8. – Квартиль: Q2.

 

17. T. Kalachova, V. Kravets, A. Zachowski, E. Ruelland. Importance of phosphoinositide-dependent signaling pathways in the control of gene expression in resting cells and in response to phytohormones // Plant Signaling & Behavior. – 2015. – Vol. 10, No. 5. – P. 1–6. – DOI: 10.1080/15592324.2015.1019983. – Квартиль: Q2.

 

18. I. V. Pokotylo, Y. S. Kolesnikov, M. V. Derevyanchuk, A. I. Kharitonenko, V. S. Kravets. Lipoxygenases and plant cell metabolism regulation // Ukrainian Biochemical Journal. – 2015. – DOI: 10.15407/ubj87.02.041. – Квартиль: Q4.

 

19. Ruelland E., Kravets V. S., Derevyanchuk M., Martinec J., Zachowski A., Pokotylo I. Role of phospholipid signalling in plant environmental responses // Environmental and Experimental Botany. – 2014. – DOI: 10.1016/j.envexpbot.2014.08.009. – Квартиль: Q1.

 

20. Pokotylo, I.V., Kretynin, S.V., Khripach, V.A. et al. Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus // Plant Growth Regulation. – 2014. – DOI: 10.1007/s10725-013-9863-y. – Квартиль: Q1.

 

21. Derevyanchuk M. V., Grabelnyh O. I., Litvinovskaya R. P., Voinikov V. K., Sauchuk A. L., Khripach V. A., Kravets V. S. Influence of brassinosteroids on plant cell alternative respiration pathway and antioxidant systems activity under abiotic stress conditions // Biopolymers and Cell. – 2014. – DOI: 10.7124/bc.0008BD. – Квартиль: Q4.

 

22. Pokotylo I., Kolesnikov Y., Kravets V., Zachowski A., Ruelland E. Plant phosphoinositide-dependent phospholipases C: Variations around a canonical theme // Biochimie. – 2014. – Vol. 96. – P. 144–157. – DOI: 10.1016/j.biochi.2013.07.004. – Квартиль: Q2.

Contact

1 Akademika Kukharya Street, Kyiv 02094

derevmyk@ukr.net

(050) 612 3470

V.P. Kukhar Institute 
of Bioorganic Chemistry and Petrochemistry
NAS of Ukraine

Address

© 2026 IBOPC NAS of Ukraine